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Appendices
This supplementary material contains more details in-

cluding:

A. Illustrative examples of Composition-Wild,

B. More qualitative comparisons,

C. Further ablation study and analysis,

D. Implementation details.

A. Illustrative Examples of Composition-Wild
In Fig. 1, we visualize examples of the proposed

Composition-Wild benchmark, including composited im-
ages, guidance, and groundtruth alpha matte. Composition-
Wild is a challenging proxy of in-the-wild matting dataset,
where the complex interaction between multiple objects oc-
curs.

B. More Qualitative Comparisons
Here we provide more qualitative comparisons on di-

verse scenarios: mask-guided matting on the coco dataset,
mask-guided video matting, and panoptic matting.

B.1. COCO Dataset

Comparison with trimap-based method. In the main pa-
per, we compare our proposal to a baseline of the mask-
guided matting model [8]. In this section, we conduct qual-
itative comparisons with a trimap-based baseline. To auto-
matically generate a trimap from the given mask, we apply
simple heuristics, treating the boundary of the given mask as
an uncertain region. Given this trimap, we run the state-of-
the-art trimap-based matting model (MatteFormer [6]) us-
ing their official pre-trained weights. The results are sum-
marized in Fig. 2. While the baseline also produces rea-
sonable alpha matte for defined uncertain regions (see the
first example in Fig. 2), such heuristics cannot detect di-
verse patterns of uncertain regions in the wild. As a result,
the trimap-based baseline fails to correct the large interior
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Figure 1. Illustrative examples of Composition-Wild.

in mask (second example) or predict plausible opacity value
for transparent regions (third and fourth examples). Thus,
for the trimap-based baseline, additional human interaction
is necessary to handle such challenging cases. On the con-
trary, our mask-guided matting model semantically under-
stands the given guidance and produces a pleasuring alpha
matte without additional interaction.

Qualitative Results with Different Guidance. We analyze
how our model performs with different guidance. To this
end, we test two different types of mask guidance, predic-
tions of the off-the-shelf model [3] or hand drawn mask [5].
As shown in Fig. 3, our model predicts fine details of alpha
matte regardless of quality or type of guidance.
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Figure 2. Qualitative comparisons with trimap-based method. We indicate the uncertain region in trimap as gray color.

B.2. Mask-guided Video Matting

In our supplementary video, we provide qualitative com-
parisons on the task of mask-guided video matting. In
this setting, only a single instance mask is given in the
first frame. We leverage a video object segmentation net-
work [1, 7] to propagate the given mask to the rest of the
video frames. Then the propagated masks are utilized as
guidance to the mask-guided matting model.

Despite the noise in propagated masks, our model is
able to differentiate the target objects from the surround-
ings clearly. Besides, it produces reasonable and temporally
consistent opacity in challenging scenarios such as motion
blur. We could seamlessly replace the background with
other videos with the predicted alpha matte. On the con-
trary, the editing results derived from the baselines show
severe artifacts: 1) the boundary of the composited target
object is awkward when the propagated mask is naively uti-
lized, and 2) non-target objects or background wrongly ap-
pears in the results of MGMatting [8].

B.3. Panoptic Matting

In this section, we show the additional qualitative com-
parisons on panoptic matting. Mask-guided matting model
considers each segment of a given panoptic mask separately
and produces the corresponding alpha matte. Panoptic mat-
ting results could be obtained via aggregation of these pre-
dictions. To visualize the soft transition between different
segments, we mix the original color of each segment with
the ratio of opacity value. We include a large volume of
qualitative comparisons in Fig. 9 ∼ Fig. 38.
Strength. From the comparison between our model and
MGMatting [8], we see the clear strength of our proposal.

• Strong Instance Discrimination Ability: Our model has a
strong semantic understanding so that it captures the tar-
get object from the given mask and discriminates well
from the nearby similar objects. On the contrary, the
baseline model [8] mostly relies on low-level features
and struggles to differentiate between objects, resulting
in inferior matting quality. Representative examples are
shown in Fig. 5.
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Figure 3. Qualitative results with different guidance. Guidance
(a) and (b) denote model predicted masks [3] and manually drawn
ones [5], respectively.

• Great Generalization to Unseen Objects: Under the pro-
posed learning framework, the model learns generalized
knowledge. Therefore it also well perform on unseen
targets such as stuff region in Fig. 6. On the other hand,
MGMatting [8] fails to handle such new targets and tends
to produce zero opacity value for them.

Limitation. Although our model produces improved results
in most cases, the model still shows limitations in several
challenging scenarios. These are key aspects in order to
build a more competitive mask-guided matting model.

• Extremely Crowd Scene with Similar Objects: As shown
in Fig. 7, our model has trouble with handling extremely
crowded scenes. The model can not capture the clear
boundaries of the target objects.

• Small Objects: We observe that the model shows results
of inferior fine details for small target objects (see Fig. 8).

C. Further Ablation Study and Analysis
Effects of Guidance Perturbations. In the main paper, we
show that both image and guidance perturbation are key
components to the success of the self-training framework.
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Figure 4. Visualization of Pseudo Labels. The quality of pseudo
labels is improved through the self-training.

We further explore the effects of guidance perturbations.
Table 1 summarizes the results of the ablation study under
the different qualities of mask guidance. In particular, we
dilate the mask guidance with different kernel sizes from
15 to 35 (guidance with smaller kernel sizes contains more
precise information). Leveraging guidance perturbations in
self-training brings clear improvements for all the settings.
In addition, we empirically confirm that the guidance per-
turbations boost the robustness to noise in mask as more
gains for noisy guidance are observed.

Dilation Size (D)
Method D=15 D=20 D=25 D=30 D=35
No Guide. 16.46 17.28 18.27 20.21 22.08
Ours 15.11 15.97 16.72 18.18 19.35
Gain 1.36 1.30 1.56 2.03 2.73

Table 1. Ablation study on Guidance Perturbation. We report
the SAD metric on AIM-500 [4] dataset under the different quality
of mask-guidance.

Effects of Teacher-Student Framework. To hallucinate
the high-quality pseudo labels, we introduce the teacher-
student framework, where the teacher network is an expo-
nential moving average (EMA) of the student model. We
leverage stable predictions of the teacher network as pseudo
labels and use them to guide the student network.

In this section, we analyze the effects of the teacher-
student framework. We first visualize how the pseudo la-
bels evolve as the training proceeds in the Fig. 4. At the
beginning of the self-training, the pseudo labels are likely
to have the wrong opacity value for in-the-wild objects. As
the training proceeds, pseudo labels get calibrated and give
valid supervision signals to the student networks. This re-
sults in more strong teacher network in turn, and the net-
works self-evolve during the training.
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Figure 5. Qualitative comparisons on images with similar objects. Our model shows strong instance discrimination ability. Best viewed
zoomed in.

Slowly advancing the teacher network is crucial to boost
performance. When we replace the weights of the teacher
network with that of the student network at every iteration
(i.e., fast update), the self-supervision becomes unstable,
and the final performance drastically drops (See Table 2).

Composition-Wild AIM-500
Method SAD MSE SADFG SADBG SAD MSE

Ours 58.16 0.0046 47.32 10.84 16.72 0.0030

Fast Update 61.48 0.0049 49.08 12.40 17.96 0.0034

Table 2. Ablation Study on Update Strategy of Teacher Net-
work. By default, we slowly update the teacher network via expo-
nential moving average (EMA) of the student network.

D. Implementation Details

Training details. For the pre-training stage on composited
images, we follow the same training parameter as MGMat-
ting [8]. For the fine-tuning stage, we fine-tune the net-
work for 50,000 iterations with warm-up at the first 5,000
iterations. To form the strongly augmented version of the
input image, we randomly apply linear contrast adjustment,
brightness adjustment, channel shuffling, and additive gaus-
sian noise as pixel-level augmentations. For the ablation
study in Sec.6 of the main paper, we use gaussian blur and
jpeg compression as region-level augmentation.

Editing details. We use [2] to extract the foreground color
based on the image and predicted alpha matte. Then, for the
background replacement, the extracted foreground objects
are composited on new backgrounds following the compo-
sition formula.
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Figure 6. Qualitative comparisons on images with unseen classes. Our model successfully deals with unseen targets during training.
Best viewed zoomed in.

(a) Image (b) Guidance (c) MGMatting (d) Ours

Figure 7. Qualitative comparisons on extremely crowded images. We indicate the red box for failure cases. Best viewed zoomed in.
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Figure 8. Qualitative comparisons on images with small objects. We indicate the red box for failure cases. Best viewed zoomed in.



Figure 9. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 10. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 11. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 12. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 13. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 14. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 15. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 16. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 17. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 18. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 19. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 20. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 21. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.

(a) Image (b) Guidance (c) MGMatting (d) Ours



Figure 22. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 23. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.

(a) Image (b) Guidance (c) MGMatting (d) Ours



Figure 24. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 25. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 26. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 27. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 28. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 29. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 30. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 31. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 32. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 33. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 34. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 35. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 36. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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Figure 37. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.

(a) Image (b) Guidance (c) MGMatting (d) Ours



Figure 38. Qualitative Comparisons on Panoptic Matting. Best viewed zoomed in.
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