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Abstract

Mask-guided matting has shown great practicality com-
pared to traditional trimap-based methods. The mask-
guided approach takes an easily-obtainable coarse mask as
guidance and produces an accurate alpha matte. To ex-
tend the success toward practical usage, we tackle mask-
guided matting in the wild, which covers a wide range of
categories in their complex context robustly. To this end,
we propose a simple yet effective learning framework based
on two core insights: 1) learning a generalized matting
model that can better understand the given mask guidance
and 2) leveraging weak supervision datasets (e.g., instance
segmentation dataset) to alleviate the limited diversity and
scale of existing matting datasets. Extensive experimen-
tal results on multiple benchmarks, consisting of a newly
proposed synthetic benchmark (Composition-Wild) and ex-
isting natural datasets, demonstrate the superiority of the
proposed method. Moreover, we provide appealing results
on new practical applications (e.g., panoptic matting and
mask-guided video matting), showing the great generality
and potential of our model.

1. Introduction
Image matting aims to predict the opacity of ob-

jects, which enables precise separation from surround-
ing backgrounds. Due to the ill-posed nature of the
task, many works [7, 13, 21, 27, 30, 48] have improved
matting performance by relying on the manual guidance
of a trimap. However, pixel-level annotation of fore-
ground/background/unknown is extremely burdensome, re-
stricting its usage in many practical applications such as im-
age/video editing and film production. Recently, many ef-
ficient alternatives for user guidance have been proposed,
including trimap-free [15, 32], additional background im-
ages [22, 34], scribble [43], and the user clicks [45].

Among them, the mask-guided approach [50] shows a
great trade-off between performance and intensity of user
interaction. It utilizes a coarse mask as guidance, which is
much easier to obtain either manually or from off-the-shelf
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Figure 1. Qualitative Comparisons of MGMatting [50] and
Ours in the wild. The mask guidance is overlaid on images with
blue color. Best viewed zoomed in.

segmentation models [2, 10]. With only the coarse spatial
prior, the mask-guided matting model [50] shows compara-
ble or even better performance than the trimap-based com-
petitors [13,17,21,27,48] on synthetic Composition-1k [48]
and a real-world human matting dataset [50]. However, de-
spite the encouraging results, we see the previous state-of-
the-art model [50] struggles to obtain desirable alpha matte
in complex real-world scenes (see Fig. 1).

With this observation, we tackle mask-guided matting
in the wild. Specifically, we formulate unique setups and
emerging challenges of the new task as follows: (1) We aim
to handle objects in their complex context, reflecting the
characteristics of natural images. The previous method [50]
evaluates their model on iconic-object images [1,29] where
only a single object is in the center. As the model can
easily find the target object in such images, the model’s
real instance discrimination ability is, in fact, veiled. On
the contrary, in an ‘in-the-wild’ setting, it is crucial to pre-
cisely localize the target object from the given coarse/noisy
mask guidance (i.e. mask awareness). (2) Our model tar-
gets to deal with diverse categories of objects in natural



images. Unlike most previous methods that improve gen-
eralization performance at the expense of category-specific
regime (e.g., limiting to humans [15] or animals [19]), we
aim to understand distinctive matting patterns of vast cat-
egories. (3) Limited data problem makes the new setting
more complicated. Due to the labeling complexity, anno-
tating alpha matte for objects in common scenes, e.g., the
COCO dataset [24], is infeasible. As a sidestep, previ-
ous benchmarks [32, 48] extract the alpha matte and fore-
ground colors from images with simple backgrounds. These
are composited on various backgrounds [6, 24], and result-
ing samples are used to train and evaluate matting models.
However, due to the inevitable composition artifacts, the
models usually show limited generalization performance.
In that sense, how to train and evaluate the in-the-wild mat-
ting model remains an open question.

Toward this goal, we propose a simple yet effective
learning framework for a generalized mask-guided matting
model. First, we investigate fundamental reasons for the
poor generalization of the previous mask-guided matting
model [50] and find that this is mainly from the training
data generation process. Specifically, the previous compo-
sition process includes instance merging data augmentation,
which merges several foreground objects into a single ob-
ject. While this augmentation is effective in the trimap-
based methods [21, 30, 41], it implicitly makes a negative
bias for the mask-guided matting model to ignore the guid-
ance. Thus, the model struggles to localize the target objects
in complex natural scenes. We alleviate the bias by propos-
ing an instance-wise learning objective, where the model is
supervised to segment one of multiple instances according
to the guidance. By doing so, the model learns strong se-
mantic representation regarding complex relations and soft
transitions between objects. Despite the simplicity of the
proposal, this greatly improves performance in the wild.

Second, we explore a practical solution to make the
mask-guided model handle various categories of objects ro-
bustly. Instead of scaling the matting dataset, we leverage
a dataset with weak supervision [14, 46] (i.e., instance seg-
mentation dataset [24]), as the coarse instance masks are
easier to obtain over the diverse categories of objects. To
effectively hallucinate the fine supervision signal with the
weak localization guidance, we come up with a self-training
framework [36, 37, 47]. Specifically, a pseudo label is gen-
erated based on a weakly-augmented input (both image and
instance mask annotation as guidance), which supervises
the model prediction on a strongly augmented version of
them. During self-training, the model is not only adapting to
the in-the-wild scenario in a self-evolving manner but also
being robust to noise in both image and guidance.

To verify the in-the-wild performance of mask-guided
matting, we formally define an evaluation protocol involv-
ing multiple sub-benchmarks: Composition-Wild, AIM-

500 [20], COCO [24]. We first design an in-the-wild ex-
tension of the popular synthetic Composition-1k bench-
mark [48], namely Composition-Wild. We simulate com-
plex real-world images by compositing multiple foreground
objects. To bring valuable insight on the failure cases of
the model, we design sub-metrics for Composition-Wild.
In addition, we use the AIM-500 dataset to establish quan-
titative results on natural images (i.e., with no composition
artifacts), although most images are iconic-object images
with simple backgrounds. Finally, we provide qualitative
outputs of our mask-guided matting model on the COCO
dataset [24] which is one of the most representative in-the-
wild datasets.

To summarize, we make the following main contribu-
tions. 1) To our best knowledge, it is the first work to
explore mask-guided matting in the wild. 2) We develop
a simple yet effective learning framework leveraging both
composited and weak-guidance images. 3) We design an
evaluation setup for the new task. 4) We initiate several in-
teresting extensions: video and panoptic matting.

2. Related Works
Natural Image Matting. Most image matting methods re-
quire a trimap as additional input, which conveys pixel-level
annotations of foreground, background, and unknown re-
gion. Traditional image matting methods can be catego-
rized into two groups. Sampling-based methods [5, 8, 11,
35, 44] estimate the alpha matte of the unknown region
based on sampled colors of foreground and background.
Propagation-based methods [4,12,16–18,38] propagate the
neighboring known alpha values to unknown regions ac-
cording to the affinity between pixels. Both methods pri-
marily rely on color or low-level features, showing limita-
tions in complicated scenarios.

To tackle these issues, many deep-learning based mat-
ting methods have been proposed. DIM [48] is a repre-
sentative work which proposes a convolutional encoder-
decoder matting network as well as a large-scale syn-
thetic dataset (Composition-1k) to train the model. Many
follow-up works have made tremendous improvements in
diverse aspects, such as sophisticated loss design [7, 13, 28]
and architectural advances by introducing attention mecha-
nisms [21, 26] or transformer architecture [30].

There is a large volume of trials to relax the heavy user-
supplied constraints. Some methods [32, 52] attempt to get
rid of trimap. However, they show inferior performance
and cannot be generalized to unseen objects in the real
world. Sengupta et al. [34] utilize additional background
images along with other lightweight priors (e.g., segmen-
tation mask) to perform the matting task. Wei et al. [45]
introduce user click interaction to effectively eliminate the
ambiguity of target object. Recently, MGMatting [50] pro-
poses a mask-guided matting framework, where only the



easily obtainable coarse mask is needed as guidance.
In this paper, we further study mask-guided matting in an

in-the-wild setting, inspired by the generality and practical-
ity of the framework. Different from MGMatting, we target
diverse categories of objects in their complex background,
enabling real-world applications.
Class-specific Matting is a special type of matting that lim-
its target objects to one or few classes such as humans [3]
or animals [19]. BSHM [25] leverages the coarse segmen-
tation mask data to build a generalized human matting net-
work. MODNet [15] presents a lightweight network ar-
chitecture with decomposed multi-scale network designs.
GFM [19] first proposes the task of animal matting and a
real-world animal matting dataset. In general, known se-
mantics effectively ease the difficulty of matting, and these
methods show great generality without the necessity of ad-
ditional guidance input. However, the specialized methods
and trained model cannot be generalized to the in-the-wild
setting since limited semantics do not cover diverse patterns
of visual worlds.

Apart from previous efforts, we attempt to extend the
short category regime of matting networks. For this pur-
pose, we propose an efficient solution by leveraging the in-
stance segmentation dataset [24], which covers diverse cate-
gories of objects with weak localization annotations. Given
the weak guidance dataset, we study the challenges in de-
veloping an in-the-wild mask-guided matting model.

3. Mask-guided Matting in the Wild
In natural scenes, objects are rarely in isolation: diverse

categories of entities interact with each other. We aim to
robustly separate a target object from the surroundings in
such scenes. Specifically, we formulate the problem in the
form of mask-guided matting, namely mask-guided matting
in the wild. Our matting model takes an easily-obtainable
coarse mask as guidance, either manually drawn or pre-
dicted from the off-the-shelf segmentation models. With
in-the-wild data, the model needs to understand semantics
so that it can precisely localize the target object from the
given noisy masks. In the meantime, the model also needs
to have strong low-level feature representation so that it can
capture fine details and accurate opacity of the diverse target
matte.

To concrete the new challenges toward such an in-the-
wild setting, we first study how the previous model [50]
performs. We derive predictions with different mask guid-
ance and summarize the results on Fig. 2. As shown in
the upper example, in the synthetic Composition-1k [48]
example, the previous model perfectly separates the fore-
ground object regardless of the given guidance. Surpris-
ingly, it produces an alpha matte of the foreground object
when the mask of the background region is given as guid-
ance. On the contrary, the model lacks generalization on
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Figure 2. Predictions of MGMatting [50] with different guid-
ance. (upper) synthetic Composition-1k image [48]. (bottom)
Complex real world image [49]. Best viewed zoomed in.

complex real-world scenes (see bottom example). In partic-
ular, the model fails to localize the target object and makes
wrong predictions on regions of similar color distributions
(e.g., shadows) or another nearby object. From the two rep-
resentative examples, we make several observations: 1) The
previous method yields a model overfitted to the (trained)
synthetic matting dataset, which memorizes the limited pat-
terns of foreground objects rather than semantically under-
standing the mask guidance for localizing and segmenting
the objects; 2) Such a model fails to precisely localize and
segment a target object in the wild; 3) Previously used syn-
thetic benchmark, Composition-1k [48], neither represents
the complex nature of the in-the-wild setting nor systemat-
ically blocks the shortcut of the overfitting issue. Thus the
Composition-1k may not be a suitable benchmark for mask-
guided matting in the wild.

To this end, we explore how to train a generalized mask-
guided matting model given the limited scale and diversity
of the matting dataset (Sec. 4), as well as revisit the evalua-
tion benchmark to test the model (Sec. 5).

4. Proposed Method

The overview of the proposed training framework is il-
lustrated in Fig. 3. Our framework involves three types
of datasets: 1) matting dataset that includes accurate alpha
matte and corresponding foreground colors; 2) background
dataset, where the foreground objects are composited to cre-
ate training samples; 3) weak supervision dataset that is in-
troduced to extend the matting model to the in-the-wild set-
ting. The main goal of our framework is to learn accurate
matting ability from the synthetic composited images and
generalize the knowledge to the in-the-wild domain. To this
end, we first investigate how the model could learn gener-
alized knowledge from the composited images (Sec. 4.1),
then how the model is further improved with weak supervi-
sion data (Sec. 4.2).
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Figure 3. The Overview of the Proposed Framework. (a) Learning from composited images with instance-wise learning (Sec. 4.1). (b)
Learning from weak-supervision images with self-training (Sec. 4.2).

4.1. Learning from Composited Images

As discussed in the Sec. 3, the previous model [50]
shows poor generalization performance in the challenging
real-world setting. Specifically, it often fails to identify the
target object in a given guidance and produces a matting re-
sult for other objects. We found that the problem, the lack
of mask awareness, comes from the previous data pipeline
to generate training samples.

For a clear understanding, we first briefly summarize the
previous training data generation step proposed in MGMat-
ting [50]. Here, for clarity, generic data augmentation such
as random-crop, resize, and affine-transform are omitted.
A foreground object (consisting of foreground color F and
alpha matte α) and a background image B are randomly
sampled from the matting and background datasets, respec-
tively. These are composited to form a training image I
following the composition formulation as follows:

I = Composite(F, α,B) = αF + (1− α)B. (1)

To simulate the mask guidance M , they first binarize the
alpha matte with a threshold randomly sampled from 0 to
1, then apply dilation and/or erosion to it. In addition, they
propose a stronger mask augmentation, CutMask [50], orig-
inally designed for robustness to noise in mask guidance.
Like CutMix [51], a random-sized patch is selected, and the
content is pasted on a random position.

In addition, MGMatting [50] adopted instance merging
augmentation as most state-of-the-art trimap-based matting
methods [21, 30, 41] did. Specifically, they select two ran-
dom foreground objects, merge them into a single object,

and composite it on a random background image. The in-
stance merging augmentation effectively alleviates the lim-
ited scale and diversity of foreground objects in the matting
dataset. However, in the context of mask-guided matting,
we found that this augmentation hinders instance-wise un-
derstanding and makes a negative bias that the model even-
tually segments all the existing composited objects regard-
less of the given mask guidance. The different effects of
the same augmentation are originated from the uncertainty
of mask guidance. While the trimap brings pixel-level ac-
curate localization of foreground/background/unknown re-
gions, the mask guidance naturally conveys noisy informa-
tion, and it is hard to localize them accurately. Under such
uncertainty, the model tends to find the shortcut, segment-
ing all the composited objects rather than learning to utilize
the uncertain mask guidance.
Instance-wise Learning. We systematically block the
above shortcut and enforce the model to learn complex rela-
tions and soft transitions between objects. The idea is sim-
ple: supervise the model to segment one of them accord-
ing to the guidance (See Fig. 3-(a)). Specifically, given the
two foreground objects (colors F1,F2 and opacity α1,α2),
we sequentially composite these foreground layers (the first
object is on top.) on background image B as follows:

I = Composite(F1, α1, Composite(F2, α2, B))

= α1F1 + α2(1− α1)F2 + (1− α1)(1− α2)B.
(2)

Based on the above equation, we re-calibrate the fractional
contribution of each foreground object to images at pixel
level as follows: α1 = α1, α2 = α2(1−α1). We randomly



select an index irand ∈ {1, 2} of a target object. With the
guidance M(αi), the model predicts the opacity of the tar-
get object α̃i, which is supervised by corresponding ground-
truth alpha matte αi. Such instance-wise training makes the
model learn fractional differentiation between objects ac-
cording to the given coarse mask guidance.

4.2. Learning from Images with Weak Supervision

Due to the annotation difficulties, the labels of the alpha
matte are practically infeasible to collect for large quantities
and diverse categories. By comparison, coarse mask anno-
tations are more abundant and accessible, thus extending
the dataset scale and taxonomies is easier to achieve. Moti-
vated by this, we leverage the weak supervision dataset (i.e.,
instance segmentation [24]), and investigate how these new
data benefit the generalization of the mask-guided matting
model. The main challenge lies in how to get matting su-
pervision because the instance mask labels are noisy in fine
details and do not include opacity annotations.

To effectively tackle this challenge, we design a self-
training framework (See Fig. 3-(b)). The framework gener-
ates pseudo matting labels α̂ under the guidance of instance
masks, and the pseudo labels supervise the matting model
on natural images. To obtain high-quality pseudo labels, we
adopt several design choices as follows.
Teacher-Student Framework. Motivated by the success in
self-/semi-supervised learning [9, 42], a teacher network is
introduced, which is a slowly advancing version of a student
model via the exponential moving average (EMA). We uti-
lize stable predictions of the teacher network as the pseudo
labels α̂ and guide the student model during training.
Weakly-augmented Input. The teacher network takes
weakly-augmented samples to generate the pseudo labels.
We only apply standard geometric augmentation, such as
affine transform and random crop, for both image and mask
guidance. Despite the noise in fine details, the ground-
truth instance mask conveys a strong localization cue to the
model, resulting in high-quality pseudo labels.

For strongly-augmented inputs, the student model pro-
duces predictions α̂′, which are supervised to be the same
as the pseudo labels α̂ obtained from the teacher model. To
form the strongly-augmented version, we design two types
of augmentations: image and guidance perturbations.
Image Perturbations. Previous self-training-based meth-
ods [36, 37, 47] often employ region-level augmentation
(e.g., Gaussian blur) to generate the strongly-augmented
images. However, in the matting task, these augmentations
are unsuitable since they interpolate the color value across
the pixels and disturb each object’s fractional contribution.
This results in a mismatch of ground-truth alpha matte be-
tween the teacher and student inputs, lowering the effec-
tiveness of self-training. We instead adopt linear pixel-level
augmentations such as additive Gaussian noise and linear

contrast.
Guidance Perturbations. We also modulate the reliabil-
ity of mask guidance via dilation and/or erosion of the in-
stance mask. Considering the diverse size of objects in nat-
ural scenes, we decide the kernel size based on the size of
the object. Specifically, we set the kernel size as β% of the
shorter side of an object bounding box. The guidance per-
turbation is crucial to not only the success of self-training
but also the robustness against common noise in mask guid-
ance.

4.3. Unified Training

As shown in Fig. 3, under the proposed framework,
the (student) mask-guided matting model can jointly learn
from composited images with ground-truth labels and nat-
ural images with weak supervision. The final loss function
is a combination of losses on both images as: Lfinal =
Lcomposited + Lnatural.

For the composited images, we use the same loss
function as MGMatting [50], which is the summation
of l1 regression loss, composition loss [48], and Lapla-
cian loss [13]. Thus, Lcomposited = Ll1(α̃i, αi) +
Lcomp(α̃i, αi) + Llap(α̃i, αi). To calculate the composi-
tion loss, we use ground-truth foreground color and alpha
matte for non-target objects. For the natural images, we use
l1 regression loss as follows: Lnatural = Ll1(α̂

′, α̂).

5. Benchmarks
There are several public matting benchmarks [19,20,32,

39, 48, 50] which provide high-quality alpha matte. How-
ever, none of them reflects the complexity of in-the-wild
images and the consisting samples only contain a single ob-
ject with simple backgrounds. Thus, we carefully design
a new evaluation setup to facilitate an extensive evaluation
of the mask-guided matting model in in-the-wild scenarios.
The new setup consists of multiple benchmarks, and we de-
scribe the distinctive role of each benchmark below.
Composition-Wild. We first propose an in-the-wild exten-
sion of standard synthetic benchmark Composition-1k [48],
namely Composition-Wild. We simulate the complex con-
text of in-the-wild images by compositing multiple fore-
ground objects onto a background image, similar to Eq.(2).
The same foreground object data and background dataset
(i.e., PASCAL VOC [6]) are utilized as Compostion-1k. We
report the performance over the forefront object from each
sample unless otherwise specified. In addition, we design
comprehensive metrics to allow in-depth analysis.

• SADFG reports the SAD (Sum of Absolute Difference)
over the target object region where has non-zero ground-
truth alpha matte. It indicates how well the prediction
captures fine matting details of target objects (i.e., Target
Detail Quality).



• SADBG quantifies the wrong predictions on other ob-
jects or background regions by measuring the SAD over
the non-target object region. It represents the capability
of target object localization from the noisy mask guid-
ance (i.e., Localization).

• SADOCC measures the SAD error of occluded objects. It
indicates how well the model deals with occluded objects
(i.e., Occlusion handling).

AIM-500 [20] is a natural image matting benchmark that
contains diverse categories of objects. The performance
evaluation on the AIM benchmark denotes whether the
model generalizes well to natural images rather than over-
fitting to the synthetic distribution of composited images.
However, AIM is limited at capturing matting performance
in complex contexts since they only contain images with
simple backgrounds. In that regard, the evaluations on
Composition-Wild and AIM complement each other and
provide a holistic understanding of the mask-guided mat-
ting model in the wild.
COCO [24] is a representative example of in-the-wild im-
ages. While we cannot access ground-truth alpha mattes
on COCO, we conduct qualitative comparisons over diverse
objects in their natural context.

6. Experiments

6.1. Implementation Details

Architecture details. We build our learning framework
with a state-of-the-art mask-guided matting network, PRN
from MGMatting [50], which adopts a standard encoder-
decoder structure [21,33] and progressively refines the out-
put through the decoding process.
Training details. In practice, we adopt the two-stage train-
ing: pre-training on composited images and fine-tuning on
both composited and natural images. This ensures the qual-
ity of pseudo labels at the beginning of the self-training,
resulting in better performance. Following the previous
works [21, 27, 30, 48], we use DIM [48] and COCO [24]
as matting and background datasets, respectively. COCO
dataset [24] is also utilized for a weak guidance dataset. We
set the kernel ratio β as 0.2.
Evaluation details. We report the widely used four matting
metrics, SAD (Sum of Absolute Differences), MSE (Mean
Squared Error), Grad (Gradient), and Conn (Connectivity),
over the whole image, when the ground-truth alpha matte is
available. To simulate the coarse mask guidance, we bina-
rize the alpha matte with threshold 0.5 and then dilate the
mask with kernel size 25×25, similar to [53]. We use a
single trained model for all the benchmark evaluations and
real-world applications.
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Figure 4. Qualitative Results on COCO dataset. The guidance
are either manually drawn [24] (upper) or a prediction of the off-
the-self model [10] (bottom). Best viewed zoomed in.

(a) Image (b) Guidance (c) MGMatting* (d) +IWL

Figure 5. Effect of Instance-wise Learning.

6.2. Qualitative Comparisons

Fig. 1 and Fig. 4 illustrate the qualitative comparisons
on images in the COCO validation sets. We test the models
under challenging scenarios such as occlusions, an unseen
object in a matting dataset, complex surrounding context,
and large interior errors on mask guidance. Compared with
the previous mask-guided matting model [50], our model
shows significantly better localization of a target object, as
well as, produces much more accurate alpha mattes for chal-
lenging data. More qualitative comparisons can be found in
the supplementary material.

6.3. Ablation Study and Analysis

Quantitative evaluations on Composition-Wild and
AIM-500 datasets are shown in Table 1.
Effectiveness of Instance-wise Learning. We first ana-
lyze how instance-wise learning contributes to learn gen-
eralized matting capability from composited images. We
set the two baseline models: (naive) MGMatting and MG-
Matting*. For the (naive) MGMatting, we reproduce the
model with the same training recipes proposed in MGMat-
ting [50]. In addition, we report the stronger baseline score
of MGMatting* by excluding a heavy guidance augmenta-
tion, CutMask [50]. We empirically found that CutMask



Composition-Wild AIM-500 [20]
Method SAD MSE Grad Conn SADFG SADBG SADOCC SAD MSE Grad Conn

Stage 1: Learning with Composited Images

MGMatting [50] 583.36 0.1328 139.84 52.54 65.51 517.85 842.88 71.91 0.0268 23.37 21.97
MGMatting* [50] 389.15 0.0727 141.80 44.21 55.74 333.42 524.99 26.18 0.0056 15.81 14.53
+Instance-wise (Ours) 67.27 0.0058 42.35 43.52 49.50 17.77 59.59 21.12 0.0038 16.88 14.72

Stage 2: Learning with Composited and Weak-guidance Images

Segmentation-training 69.24 0.0069 57.08 46.56 54.36 14.88 65.42 20.94 0.0043 20.46 14.20
Self-training (Ours) 58.16 0.0046 39.04 41.37 47.32 10.84 53.02 16.72 0.0030 14.68 12.02

Table 1. Quantitative evaluation on Composition-Wild and AIM-500 [20]. * denotes the improved version of MGMatting [50]. “Instance-wise” represents
instance-wise learning. A lower score is better in all the metrics.

makes substantial random localization errors in guidance
and lowers the reliability of mask guidance during train-
ing. Training with such guidance makes models ignore the
mask guidance and overfit to synthetic samples, resulting in
inferior in-the-wild performance. On top of MGMatting*,
the “Instance-wise Learning” strategy drastically benefits
the mask-guided matting model. Unlike the baseline model
that segments all the composited objects (Fig. 5-(c)), the
proposed strategy allows the model to well discriminate the
target object (Fig. 5-(d)). Our model faithfully utilizes the
coarse mask guidance and shows a huge gain in localiza-
tion performance (see SADBG metric). Although the strat-
egy assumes multi-object scenarios and learns the complex
relations between them, it also contributes to the better mat-
ting details for an object (see SADFG in Composition-Wild
and SAD in AIM). By design, the instance-wise learning
naturally improves occlusion handling by learning the order
of layered foreground objects and their fractional contribu-
tions.
Effectiveness of Self-training. To extend the mask-guided
matting model to the in-the-wild setting, we leverage the
weak-supervision dataset under the proposed self-training
framework. We compare our self-training framework to a
baseline, namely “segmentation-training”. This baseline is
motivated by previous human-matting methods [23, 25]. It
attempts to learn generalized matting capability via simulta-
neous segmentation training on natural images. To be spe-
cific, the model takes strongly augmented instance masks as
guidance and is supervised to recover ground-truth instance
masks through the additional segmentation head. As de-
teriorated performance indicates, the segmentation-training
strategy fails to scale up to the in-the-wild setting. While
it enhances the localization of target objects, supervision
from binary instance masks hinders learning diverse mat-
ting patterns in the wild (see SADFG metric), especially
for transparent objects. On the contrary, our self-training
framework successfully generates the soft-pseudo label and
utilizes it as a direct supervision to matting tasks, resulting
in huge improvements in all the metrics.
Analysis on Perturbation in Self-training. To demon-

Composition-Wild AIM-500
Method SAD MSE SADFG SADBG SAD MSE

Ours 58.16 0.0046 47.32 10.84 16.72 0.0030

No Image. 60.08 0.0048 45.19 14.89 18.57 0.0039
No Guide. 60.14 0.0049 47.95 12.19 18.27 0.0035

Table 2. Ablation Study on Perturbations in Self-training.

strate the effectiveness of perturbations in self-training, we
ablate the image and guidance perturbations separately. The
results are summarized in Table 2. As degraded perfor-
mance denoted, encouraging robustness against image and
guidance perturbations is crucial to the success of the self-
training.

We further investigate whether the matting-specific de-
sign of image perturbation is necessary. To this end, we
train three variants with different configurations of image
perturbations: (1) Pixel-level linear augmentation (Pixel),
(2) Region-level augmentation (Region) and (3) Both of
them (Pixel+Region). Below, we report the SAD metric for
Composition-Wild and AIM-500, respectively.

Pixel Region Pixel+Region
58.16 / 16.72 69.8 / 25.96 61.88 / 19.00

We can observe that the region-level augmentation, which
is widely used in other tasks [37, 47], disturbs the effects
of self-training objectives. As discussed in Sec. 4.2, this is
because the region-level augmentation breaks the underly-
ing opacity of objects and make a mismatch between inputs
of the student and the teacher networks. On the contrary,
pixel-level linear augmentation brings clear improvements.

7. Real-world Applications

To show the generality and potential of the in-the-wild
mask-guided matting model, we illustrate two new appli-
cations: mask-guided video matting and panoptic matting.
Fig. 6 and Fig. 7 show examples of each application.
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Figure 6. Extension to Mask-guided Video Matting. We use propagated masks [31] as guidance.

(a) Image (b) Guidance (c) MGMatting (d) Ours (e) Editing Result

Figure 7. Extension to Panoptic Matting. Hand drawn panoptic masks [24] are utilized as guidance. We illustrate independent regions
with different colors. The black color represents ignored regions of labels or predictions.

7.1. Mask-guided Video Matting

Current video matting solutions [40, 53] require multi-
ple frames of trimap to produce an alpha matte for a video.
Therefore, required user interaction is more burdensome in
the video domain. With the mask-guided matting model,
we explore a more practical scenario where only a single
instance mask is given in the first frame. In this challeng-
ing setting, we first propagate the given mask to the rest
of the video frames using the video object segmentation
model [31]. Then, the mask-guided matting model utilizes
the propagated mask as guidance and produces alpha matte
in a frame-by-frame manner. Our model not only corrects
the noise in propagated masks but also predicts reasonable
opacity in challenging cases such as motion blur. With the
prediction, we also provide visually appealing video editing
results (i.e., background replacement).

7.2. Panoptic Matting

Panoptic segmentation aims to parse an image into non-
overlapping regions of stuff and things. By the definition
of the task format, the soft transition between the regions is
overlooked. We explore whether our mask-guided matting
model could provide such understanding from panoptic seg-
mentation results. Given a panoptic mask, our model con-

siders the segment of each region separately and produces
the corresponding alpha matte. We form panoptic matting
results by aggregating the predictions. Unlike the baseline,
our model successfully refines the fine details and captures
the soft transition between the regions. Interestingly, while
the model is trained on objects (i.e., things), our method
is well generalized on the stuff regions (See sky region in
Fig. 7). Panoptic matting enables us to do region-level im-
age editing and the qualitative results are shown in Fig. 7.

8. Conclusion
In this paper, we propose a simple yet effective learning

framework for mask-guided matting in the wild. We first
introduce instance-wise learning to learn generalized mat-
ting ability from the composited images. Then, the model
is further extended to handle diverse objects under the self-
training on weak-guidance images. Extensive experiments
on the newly proposed evaluation benchmark provide an in-
depth understanding of the unique challenges. Using our
approach, we instantiate new practical applications: mask-
guided video matting and panoptic matting. We hope our
proposals inspire future work on mask-guided matting.
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