A Generalized Framework for Video Instance Segmentation

Appendix

A. Additional Implementation Details
A.1. Training

Freezing the frame-level detector [6] during training, we
adopt pretrained weight from VITA [13] and finetune the
video-level modules only; Object Encoder (£) and Object
Decoder (D). Therefore, our total loss function is same as
L, describe in VITA and we employ same hyper-parameters.
Concretely,
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categorical loss mask-related loss

where the categorical loss is Cross Entropy and the mask-
related loss consists of Binary Cross Entropy loss and Dice
loss. The optimizer is AdamW, and we set the base learning
rate and weight decay as 5e-5 and Se-2 respectively, for all
datasets. For YouTube-VIS 2019, we train for 15K iters and
apply Ir decay at 10K iters. For YouTube-VIS 2021/2022,
we train for 90K iters and apply Ir decay at 50K iters. And
for OVIS, we train for 140K iters and apply Ir decay at 100K
iters.

A.2. Inference

We use the same inference procedure for all benchmarks
and, once again, do not involve any heuristics. To fur-
ther specify the inference procedure, we provide simplified
PyTorch-style pseudo-codes of our GenVIS in Tab. 7. Given
an input video, we sequentially process non-overlapping
clips with predefined length Ny. For each clip, we ob-
tain frame queries (fg) and mask features (mf) from
Mask2Former [6] model by feeding backbone features.
Then, the frame queries for the entire clip become the
input of Object Encoder. After that, we generate clip-
level predictions through Object Decoder by propagating
instance queries (q) from previous clip with stacked memory
(memory). Before going through the following clip, we add
encoded instance prototypes (p) of the current clip to the
memory.

B. More Experimental Details

We provide more experimental details about Tab. 4 in
Sec. 4.4. For the matching algorithm of MinVIS [14] used
in the baseline, we use the provided code from its official
repository. Since there is no publicly available code for the
CL (Correspondence Learning [32]), we reproduce the algo-
rithm following the description from the original paper [32].
We apply the original target assignment algorithm of VITA

def GenVIS (video) :
pred_cls, pred_mask, memory = [], [], []
g = object_decoder.qg

for clip in video:
feats = backbone (clip)
fgq, mf = mask2former (feats)

fq = object_encoder (fq)
q, p = object_decoder (fg, g, memory)

memory.append (p)
w = mask_head(q)

# w.shape: (Ng x C)

# mf.shape: (Nf x C x H x W)
pred_mask.append(w @ mf)
pred_cls.append(cls_head(q))

return pred_cls, pred_mask

Table 7. PyTorch-style inference pseudo-code of GenVIS.

on the first clip and keep the matched indices on the follow-
ing clips. At the inference stage, we do not use heuristics of
re-initialization of propagating queries for a fair comparison.

C. Additional Qualitative Results

In Fig. 5, we provide additional qualitative comparisons
with state-of-the-art methods that provide checkpoints in
official repositories. In addition to the results presented in
Sec. 4.5, our method successfully captures highly occluded
objects in long sequences.

D. Dependence on a large amount of labels

Designed from a frame-independent detector [6], Min-
VIS [14] has a great video-data efficiency. Despite using only
10% of the data, it still performs competitively, with —2.2
AP decrease compared to using all labels on OVIS [26]. On
the contrary, the effectiveness of GenVIS is largely from its
ability to model sequential characteristics of videos from con-
secutive clips. Thus, GenVIS does require more video-wise
labels than MinVIS. Following the experimental settings
of MinVIS, we trained GenVIS using only 10% of labels
on OVIS with Swin-L. As can be expected, the reduction
of video-wise labels hinders the temporal understanding: it
results in drop of —9.7 AP (45.2 — 35.5) compared to full
labels. Our understanding is that GenVIS, which necessi-
tates consecutive frames, faces challenges in learning diverse
appearances compared to MinVIS, which uniformly samples
frames, despite having the same limited number of frames.



E. Online inference speed

In Fig. 3, we analyze the trade-offs between performance
and speed in online & semi-online setups. Thanks to its gen-
eralized property, GenVIS provides multiple options where
users can consider either complexity of datasets or targeted
runtime. Among the varying number of clip lengths, GenVIS
shows 18.7 fps on the OVIS benchmark under the online
setting (IV ;V”l = 1). We measured the inference speeds of
MinVIS [14] and IDOL [34] under a fair evaluation environ-
ment, and each achieves 28.1 and 2.1° fps, respectively.

F. Discussions

Accuracy with the increased number of frames. Current
offline VIS methods [5, 13, 33] have difficulties in model-
ing sequential and temporal characteristics of long videos.
Therefore, as GenVIS uses such methods for predictions
within a window, the longer window brings about inaccurate
intra-clip predictions for videos with complicated trajecto-
ries, leading to the performance drop (—12.4 AP) on the
challenging OVIS benchmark (see Fig. 3 (b)). On the con-
trary, there is a marginal performance drop (—1.4 AP) when
using longer windows on YouTube-VIS 2019, which com-
prises relatively simple trajectories. From the experiments,
we would like to highlight our motivation that designing
multiple inter-clip associations in a sequential manner is ef-
fective rather than simply enlarging a intra-clip window to
handle challenging videos.

Accuracy gap between online and semi-online. Intu-
itively, as discussed in the above paragraph, semi-online
methods with an adequate window size have more potentials
to achieve higher accuracy than online models. However,
compared to the semi-online versions of GenVIS, the online
version can also achieve competitive accuracy as it stores
more memories during evaluation. Affected by these char-
acteristics, the optimal accuracy of GenVIS can be obtained
in different settings as each backbone and dataset have dif-
ferent aspects. An interesting future direction would be to
further enhance the intra-clip modeling, which would boost
the performance of semi-online VIS, coupled with GenVIS.

Dataset licenses of COCO [21], YouTube-VIS [36], and
OVIS [27]: Attribution 4.0 International, CC BY 4.0, and
CC BY-NC-SA 4.0, respectively.

3IDOL shows the slow inference speed due to its increasing computa-
tions with respect to the number of frames for post-processing.



VITA MinVIS Ours

Ours

[4] Horse 95%
[3] Hors

il i[-!’orse 100% [SJ]‘Hg\rse 100%!
&/ [’f U

MinVIS

VITA

k [9] Hor<[0] Hi

Ours

[3] Horse 9 . [0] Ho
? (3] Horse 93

[11]

/

Figure 5. Qualitative comparisons of our method, GenVIS, with the state-of-the-art methods: MinVIS [14] and VITA [13]. GenVIS shows
impressive accuracy in these complicated scenes where the objects look similar crossing each other. Objects with the same identity are
displayed in the same color.
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