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Abstract—A holistic understanding of dynamic scenes is of
fundamental importance in real-world computer vision problems
such as autonomous driving, augmented reality and spatio-
temporal reasoning. In this paper, we propose a new computer
vision benchmark: Video Panoptic Segmentation (VPS). To study
this important problem, we present two datasets, Cityscapes-
VPS and VIPER together with a new evaluation metric, video
panoptic quality (VPQ). We also propose VPSNet++, an advanced
video panoptic segmentation network, which simultaneously
performs classification, detection, segmentation, and tracking of
all identities in videos. Specifically, VPSNet++ builds upon a
top-down panoptic segmentation network by adding pixel-level
feature fusion head and object-level association head. The former
temporally augments the pixel features while the latter performs
object tracking. Furthermore, we propose panoptic boundary
learning as an auxiliary task, and instance discrimination learn-
ing which learns spatio-temporally clustered pixel embedding
for individual thing or stuff regions, i.e., exactly the objective
of the video panoptic segmentation problem. Our VPSNet++
significantly outperforms the default VPSNet, i.e., FuseTrack
baseline, and achieves state-of-the-art results on both Cityscapes-
VPS and VIPER datasets. The datasets, metric, and models are
publicly available at https://github.com/mcahny/vps.

Index Terms—video panoptic segmentation, panoptic segmen-
tation, video instance segmentation, video semantic segmentation,
scene parsing.

I. INTRODUCTION

DENSE and pixel-level interpretation of dynamic scenes
is critical for real-world vision problems such as au-

tonomous driving, augmented reality, and spatio-temporal rea-
soning. It requires tackling multiple tasks simultaneously to
classify, detect, segment, and track all the scene elements.
Solving these individual tasks provides a complementary in-
terpretation of the scene. For example, semantic segmentation
helps understand the context of surroundings, and instance
segmentation and tracking present every dynamic object’s
temporal evolution in a scene. As an effort to unify these
recognition tasks and leverage their mutual benefits, Kirillov
et al. [1] proposed the panoptic segmentation, and a large
number of approaches [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13] have been proposed since then to this new
benchmark, confirming its importance to the field.

In this paper, we extend panoptic segmentation into the
video domain. This task requires assigning semantic classes

D. Kim, S. Woo and I.S. Kweon are KAIST, Daejeon, Korea.
E-mail: {mcahny, shwoo93, iskweon77}@kaist.ac.kr

J. Lee is with Adobe Research, San Jose, CA, USA.
E-mail: jolee@adobe.com

Manuscript received XXXX XX, XXXX; revised XXXX XX, XXXX.

Fig. 1: Example video sequences of created Cityscapes-VPS
annotations for video panoptic segmentation.

and tracking id tags to all pixels and objects in a video. Fig. 1
illustrates a sample sequence of video panoptic segmentation
ground truths. In panoptic segmentation, all the scene elements
can be grouped into either ‘things’ or ‘stuff’ classes where
the former denotes countable object instances and the latter
denotes amorphous and non-countable regions. The task can
be considered a simultaneous video segmentation of both
things and stuff classes. Naturally, we name the new task
video panoptic segmentation (VPS) [14]. As a pioneer work,
solving the VPS task introduces three major challenges: the
dataset, model architecture, and evaluation. We present our
contributions that tackle these challenges throughout the paper.

Dataset. Thanks to the existence of panoptic segmentation
benchmarks such as COCO [15], Cityscapes [16], and Map-
illary [17], the panoptic image segmentation has successfully
driven active participation of the community. However, the
direction towards the video domain has not yet been explored,
probably due to the lack of appropriate datasets and evaluation
metrics. While video object/instance segmentation datasets are
available these days, no dataset permits direct training of
video panoptic segmentation (VPS). This is not surprising
when considering its extremely high cost of collecting such
data. To improve the situation, we make an important first
step in panoptic video segmentation by presenting two types
(one real and one synthetic) of datasets. The first and primary
dataset is Cityscapes-VPS that extends the public Cityscapes
dataset to a video level. We sample every five video frames
of a video and add panoptic segmentation annotations that are
temporally consistent to the public image-level annotations.
We consider this as our primary dataset as it is real data
and enables a smooth image-to-video transition from the
Cityscapes benchmark [16]. We provide profound statistics
on the label distribution and track lengths of the dataset.

https://github.com/mcahny/vps
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Second, we adapt the synthetic VIPER [18] dataset into the
video panoptic segmentation format and create corresponding
metadata.

Model architecture. We propose VPSNet++ as an advanced
video panoptic segmentation network. We build upon a top-
down video panoptic segmentation network [14], which is
built on top of the two-stage detector Mask R-CNN [19] and
the panoptic segmentation network UPSNet [5]. To deal with
video context, our VPSNet++ takes an additional reference
frame sampled from a temporal neighbor of a target frame.
Two main components are introduced to learn temporal corre-
spondences among all the pixels and objects in the two frames,
i.e., pixel-level feature fusion head and object tracking head.
First, the fusion operates bi-directionally between the reference
and target frames and mutually augments their pixel features.
Second, the tracking head is added to learn object association
between the two frames based on their regional (RoI) feature
similarity. Both fusion and tracking heads improve over the
default VPSNet-FuseTrack baseline [14]. We further propose
novel learning objectives: panoptic edge learning and spatio-
temporal pixel embedding learning that encourages the video
pixels from individual identity to be similar and those from
different identities to be distinct, which is exactly the property
required for video panoptic segmentation. As a result. VP-
SNet++ achieves the state-of-the-art results by outperforming
the VPSNet baseline by +2.1% VPQ on VIPER and +1.4%
VPQ on Cityscapes-VPS datasets.

Evaluation. We adapt the standard image panoptic quality
(PQ) measure to fit the video panoptic quality (VPQ) format.
Specifically, the metric is computed over a span of several
frames, where a sequence of same-identity segments is con-
sidered a single spatio-temporal tube prediction. The predicted
tubes are then matched to the ground truth tubes to compute
their IoUs. The longer the time-span, the more challenging
it is to obtain IoU over a threshold and to be counted as a
true-positive when computing the VPQ score. We evaluate our
proposed method with several other naive baselines using the
VPQ metric.

Experimental results demonstrate that VPSNet without its
tracking head can achieve state-of-the-art image-PQ on the
Cityscapes benchmark. More importantly, our full VPSNet++
achieves state-of-the-art VPQ results on the Cityscapes-VPS
and VIPER datasets.

We summarize the contribution of this paper as follows.

• This is a pioneer work that formally defines and studies
the video panoptic segmentation (VPS) problem.

• We present spatially and temporally dense annotated
datasets Cityscapes-VPS and a synthetic VIPER dataset,
providing challenging segmentation and tracking of dy-
namic scenes.

• We propose a video panoptic quality (VPQ) metric that
evaluates 3D overlap between the predicted and ground
truths segments in both spatial and temporal dimensions.

• We propose VPSNet++ which improves the default VP-
SNet [14] with improved fusion and tracking heads and
novel proposed learning objectives - panoptic edge learn-
ing and spatio-temporal identity discrimination learning.

• Our VPSNet++ outperforms strong image and video
panoptic segmentation baselines on panoptic quality (PQ)
and video panoptic quality (VPQ) metrics.

II. RELATED WORK

A. Panoptic Segmentation

The joint task of thing and stuff segmentation is rein-
vented by Kirillov et al. [1] by combining the semantic
segmentation and instance segmentation tasks and is named
panoptic segmentation. Since then, much research [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13] has been
actively gathered to propose new approaches to this unified
task. Recent approaches present end-to-end methods which
can be grouped into two types: top-down and bottom-up
methods. Top-down methods [4], [9], [6], [3], [5], [10] con-
sist in two-stage approach which generates object proposals
followed by the region-based prediction. Integrating Mask R-
CNN [19] and panoptic FPN features [3], these methods show
strength in capturing objects. Li et al. [9] suggest to enforce
consistency between things and stuff pixels when merging
them into a single segmentation result. Liu et al. [6] design
a spatial ranking module to address the occlusion between
the predicted instances. Xiong et al. [5] introduce a non-
parametric panoptic head to predict instance id and resolve
the conflicts between things and stuff segmentation. Bottom-up
panoptic segmentation methods group pixels to form instances
on top of semantic segmentation prediction [13], [20], [21].
For example, SSAP [22] learns pixel-pixel affinity pyramid
and Panoptic-DeepLab [23] uses instance center regression on
top of semantic segmentation prediction from DeepLab [24].
As opposed to top-down models, bottom-up panoptic seg-
mentation models are advantageous at achieving high ‘stuff’
segmentation, but low with ‘things’.

B. Video Semantic Segmentation

As a direct extension of semantic segmentation to videos,
all pixels in a video are predicted as different semantic classes.
However, the research in this field has not gained much
attention and not currently popular compared to its counterpart
in the image domain. One possible reason is the lack of
available training data with temporally dense annotation, as
research progress depends greatly on the existence of datasets.
Despite the absence of a dataset for Video Semantic Segmen-
tation (VSS), several approaches have been proposed in the
literature [25], [26], [27], [28], [29]. Temporal information is
utilized via optical flow to improve the accuracy or efficiency
of the scene labeling performance. Different from our setting,
VSS does not require either discriminating object instances
or explicit tracking of the objects across frames. Our new
Cityscapes-VPS is a super-set of a VSS dataset and thus is
able to benefit this independent field as well.

C. Video Instance Segmentation

The Video Instance Segmentation (VIS) et al. [30] task
requires tackling several multi-tasks: video object segmenta-
tion [31], [32], [33], [34], [35], [36], [37], [38] and video
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Fig. 2: Tube matching and video panoptic quality (VPQ) metric. An IoU is obtained by matching predicted and ground
truth tubes. A frame-level false positive segment penalizes the whole predicted tube to get a low IoU. Each VPQk is computed
by sliding the window through a video, and averaged by the number of frames. k indicate the temporal window size. VPQk

is then averaged over different k values, to get a final VPQ score.

object detection [39], [40], [27], and aims at simultaneous
detection, segmentation, and tracking of instances in videos.
This task is also known as multi-object tracking and segmen-
tation (MOTS) [41]. However, the focus of MOTS is on long
videos with fewer number of target classes, e.g., only cars and
pedestrians, while VIS handles wider range of thing classes.
As we aim at handling more general object (8 - 10 thing
classes), we mainly consider VIS closely related to our work.

Yang et al [30] propose MaskTrack R-CNN that extends
the Mask R-CNN [19] with a tracking branch and external
memory that saves the features of instances across multiple
frames. MaskProp [42] learns to reuse the predicted masks
from neighbor frames to crop the extracted features, and
temporally propagate the features to improve the segmentation
and tracking. STEm-Seg [43] proposes to model video clips as
spatial-temporal volumes and then separates object instances
by learning to cluster the pixel embeddings.

In contrast to our Video Panoptic Segmentation task, VIS
only deals with foreground thing objects but not background
stuff regions. Moreover, the task permits overlaps between
predicted object masks and even multiple predictions for a
single instance, while our task requires algorithms to assign a
single label to all things and stuff pixels. Last but not least, the
main benchmarks dataset for VIS task is Youtube-VIS [30],
but it contains a small number of objects (∼ 5) per frame. In
contrast, we deal with a much larger number of objects (> 20
on average), which makes our task even more challenging.

III. PROBLEM DEFINITION

A. Task Format

For a video sequence with T frames, we set a temporal
window that spans additional k consecutive frames. Given a
k-span snippet It:t+k = {It, It+1, ..., It+k}, we define a tube
prediction as a track of its frame-level segments as û(ci,zi) =
{ŝt, ..., ŝt+k}(ci,zi), for semantic class c and instance id z of
the tube. Note that instance id zi for a thing class can be larger
than 0, e.g., car-0, car-1, ... , whereas it is always 0 for a stuff
class, e.g., sky. All pixels in the video are grouped by such

tuple prediction, and they will result in a set of stuff and things
video tubes that are mutually exclusive to each other. The
ground truth tube is defined similarly, with a slight adjustment
concerning the annotation frequency as described below. The
goal of video panoptic segmentation is to accurately localize
all the semantic and instance boundaries throughout a video
and assign correct labels to those segmented video tubes.

B. Evaluation Metric

By the construction of the VPS problem, no overlaps are
possible among video tubes. Thus, AP metric used in object
detection or segmentation cannot be used to evaluate the VPS
task. Instead, we borrow the panoptic quality (PQ) metric in
image panoptic segmentation with modifications adapted to
our new task.

Given a snippet It:t+k, we denote a set of the ground
truth and predicted tubes as U t:t+k and Û t:t+k. A set of True
Positive matches is defined as TP = {(u, û) ∈ U × Û : IoU
(u, û) > 0.5 }. False Positives (FP) and False Negatives (FN)
are defined accordingly. When the annotation is given every
λ frames, the matching only considers the annotated frame
indices t : t + k : λ (start : end : stride) in a snippet, e.g.,
when k = 10 and λ = 5, frame t, t+5 and t+10 are considered.
We slide the k-span window with a stride λ throughout a video,
starting from frame 0 to the end, i.e., t goes by 0 : T − k : λ
(We assume frame 0 is annotated). Each stride constructs a
new snippet, where we compute the IoUs, TP, FP and FN as
above.

At a dataset level, the snippet-level IoU, |TP|, |FP| and
|FN| values are collected across all predicted videos. Then,
the dataset-level VPQ metric is computed per each class c,
and averaged across all classes as,

V PQk =
1

Nclasses

∑
c

∑
(u,û)∈TPc IoU(u, û)

|TPc|+ 1
2 |FPc|+

1
2 |FNc|

, (1)

where 1
2 |FP | +

1
2 |FN | in the denominator is to penalize

unmatched tubes, as suggested in the image PQ metric.
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By definition, k = 0 will make the metric equivalent to the
image PQ metric, and k = T -1 will construct a set of whole
video-long tubes. Any cross-frame inconsistency of semantic
or instance label prediction will result in a low tube IoU,
and may drop the match out of the TP set, as illustrated in
Fig. 2. Therefore, the larger window size we have, the more
challenging it is to get a high VPQ score. In practice, we
include different window sizes k ∈ {0, 5, 10, 15} to provide a
more comprehensive evaluation. The final VPQ is computed
by averaging over K = 4 as, V PQ = 1

K

∑
k V PQ

k.
Having different k values enables a smooth transition from

the existing image PQ evaluation to videos, encouraging the
image-to-video transition of further technical developments for
this pioneering field to leap forward.

C. Hyper-parameter: Temporal Window

We set k as a user-defined parameter. Having such a
fixed temporal window size regularizes the difficulty of IoU
matching across video samples of different lengths. On the
other hand, the difficulty of matching whole T -long tubes,
largely varies with the video length, e.g., when T = 10 and T
= 1000.

We empirically observed that, in our Cityscapes-VPS
dataset (λ = 5), many object associations are disconnected
by significant scene changes when k > 15. Given a new
annotation frequency (1/λ), the k shall be reset, which will
accordingly set a level of difficulty for the dataset.

IV. DATASET COLLECTION

A. Existing Image-level Benchmarks

There are several public datasets which have dense panop-
tic segmentation annotations: Cityscapes [16], ADE20k [44],
Mapillary [17], and COCO [15]. However, none of these
datasets matches the requirement for our video panoptic
segmentation task. Thus, we need to prepare a suitable
dataset for the development and evaluation of video panoptic
segmentation methods. We pursue several directions when
collecting VPS datasets. First, both the quality and quantity
of the annotation should be high, of which the former is
a common problem in some of the existing polygon-based
segmentation datasets and the latter is limited by the extreme
cost of panoptic annotations. More importantly, it should be
easily adaptable to and extensible from the existing image-
based panoptic datasets, so that it can promote the research
community to seamlessly transfer the knowledge between the
image and video domains. With the above directions in mind,
we present two VPS datasets by 1) creating new Cityscapes-
VPS dataset that adds video panoptic segmentation annotations
based on the Cityscapes dataset and 2) reformatting the VIPER
dataset.

B. Cityscapes-VPS

Instead of building our dataset from scratch in isolation,
we build our benchmark on top of the public Cityscapes
dataset [16], which is the most popular dataset for panoptic

Fig. 3: Label distribution and track length in Cityscapes-VPS
and reformatted VIPER datasets.

YT-VIS City re-VIPER City-VPS
Videos 2540 3475 124 500
Frames 108k 3475 184k 3000
Things 40 8 10 8
Stuff x 11 13 11
Instances 4297 60 K 31 K 10 K
Masks 115 K 60 K 2.8 M 56 K
Temporal X x X X
Dense (Panoptic) x X X X

TABLE I: High-level statistics of our reformatted VIPER and
new Cityscapes-VPS (additional to the original Cityscapes)
with previous video instance / semantic segmentation datasets.
YT-VIS and City stands for YouTube-VIS and Cityscapes
respectively.

segmentation, together with COCO. It consists of image-
level annotated frames of ego-centric driving scenarios, where
each labeled frame is the 20th frame in a 30 frame video
snippet. There are 2965, 500, and 1525 such sampled images
paired with dense panoptic annotations for 8 thing and 11
stuff classes for training, validation, and testing, respectively.
Specifically, we select the validation set to build our own
video-level extended dataset. We select every five frames from
each of the 500 videos, i.e., 5, 10, 15, 20, 25, and 30-
th frames, where the 20-th frame already has the original
Cityscapes panoptic annotations. For the other 5 frames, we
ask expert turkers to carefully label each pixels with all 19
classes and instance ids to be consistent with the 20-th frame
as reference. It is also asked to have similar level of pixel
quality, as shown in Fig. 1-(bottom row). Our resulting dataset
provides additional 2500 frames of dense panoptic labels at
1024× 2048 resolution that temporally extend the 500 frames
of the Cityscapes labels. The new benchmark is referred to as
Cityscapes-VPS.

Our new dataset Cityscapes-VPS is not only the first
benchmark for video panoptic segmentation but also a useful
benchmark for other vision tasks such as video instance
segmentation and video semantic segmentation; the latter has
also been suffering lack of well-established video benchmark.
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C. Revisiting VIPER dataset

To maximize both the quality and quantity of the available
annotations for the VPS task, we take advantage of the
synthetic VIPER dataset [18] extracted from the GTA-V game
engine. It includes pixel-wise annotations of semantic and
instance segmentations for 10 thing and 13 stuff classes on
254K frames of ego-centric driving scenes at 1080 × 1920
resolution. As shown in Fig. 1-(top row), we tailor their
annotations into our VPS format and create metadata in a
popular COCO style, so that it can be seamlessly plugged
into recent recognition models such as Mask-RCNN [19].

D. Dataset Statistics

We show some high-level statistics of the Cityscapes-VPS,
reformatted VIPER, and related datasets in Table. I. Also,
we illustrate the class-wise histograms, i.e., amount of pixels
in the dataset in Fig. 3. As shown in the figure, both for
Cityscapes-VPS and VIPER, ‘cars’ and ‘persons’ contain more
pixels compared to the rest of the classes. We also show
the histograms for tube (tracklet) lengths in each dataset. As
shown in the figure, most tracklet tubes in both Cityscapes-
VPS and VIPER datasets are of the whole snippet length, i.e.,
the instance appears from first to last frame of a clip. This
presents a challenge for long term consistency in segmentation
and tracking.

V. VIDEO PANOPTIC SEGMENTATION NETWORK

We propose VPSNet++, and advanced video panoptic seg-
mentation network which can simultaneously perform panoptic
segmentation and tracking of instances. In this section, we
present the network architecture and its training losses and
inference details.

A. Baselines

We build our solution on top of the top-down video panoptic
segmentation network VPSNet [14], which is built on top of
the two-stage detector Mask R-CNN [19] and the panoptic
segmentation network UPSNet [5]. VPSNet-Track adds a
Mask-Track head [30] to learn the correspondence between
the instances from different frames based on their regional
feature similarity. VPSNet-FuseTrack further adds a module
for learning feature map flow between frames and attentional
space-time feature fusion. Our VPSNet++ improves over the
above baselines.

B. Modification in Image Panoptic Segmentation Network

Our image-level panoptic segmentation network is based
on UPSNet [5]. We add an extra non-parametric layer at
the feature pyramid, which is inspired by Pang et al. [45].
They use balanced semantic features to enhance the pyramidal
neck representations. Different from them, our main design
purpose is to compute a representative single-resolution feature
map from the multi-scale feature maps. The single-resolution
representation is used in the module of VPSNet++ which will
be detailed in Sec. V-C. This is implemented by a gather
operation, where the feature pyramid network (FPN) [46]

Fig. 4: VPSNet++ architecture overview. Based on an image-
level panoptic segmentation network, our VPSNet++ learns
the inter-frame correspondences in both pixel level and object
level. First, Bi-directional Fuse head is proposed to propagate
and augment pixel features between the reference and target
frames via learnable feature flows. The temporally aggregated
features are used in all downstream task branches. Second, the
Contrastive Track head performs instance association by using
the regional feature similarities between the frames. Finally,
we add panoptic edge prediction learning as an auxiliary
task during training. Our VPSNet++ simultaneously performs
classification, detection, segmentation, and tracking (and op-
tionally, edge prediction), i.e., video panoptic segmentation.

features {p2, p3, p4, p5} are resized to the highest resolution
i.e., size of p2 or 1/4 image size, and element-wise summed
into a single-resolution feature f . This comprehensive feature
is redistributed to the multi scales to augment the original FPN
features.

C. VPSNet++ Model Architecture

An overview of our VPSNet++ is shown in Fig. 4. Our
VPSNet++ takes a target frame It and a reference frame
It−τ . During training, the reference frame is sampled from
a window τ ∈ {−5 : +5}, while it is set to It−1 (i.e.,
previous frame) at testing. The target and reference images
are independently processed through a CNN backbone and
the balanced FPN (Sec. V-B). On top of this, we propose Bi-
directional Fuse Head (Sec. V-C1) that learns to aggregate the
pixel-level features between the two frames to enhance the
feature maps. Then, we learn Contrastive Track Head with
Hard Examples (Sec. V-C2) that predicts the correspondence
between the instances from the two frames.

1) Bi-directional Fuse Head: Given the balanced pyra-
mid feature maps from the reference and target frames
{p2, p3, p4, p5}t and {p2, p3, p4, p5}t−τ , the pixel-level feature
fusion is performed between their gathered feature maps ft
and ft−τ (see Fig. 5). More specifically, we learn the bi-
directional pixel-level correspondence between ft and ft−τ to
augment the per-frame features. We adopt an align-and-attend
pipeline which first aligns the feature maps using optical
flow and merges them with spatio-temporal attention. For
simplicity, we will describe the align-and-attend feature fusion
from the reference to the target frame (t → t − τ ). Note,
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however, that the actual fusion operates in both directions
(t→ t− τ and t− τ → t).

Align module is given an initial optical flow φinitt→t−τ
computed by FlowNet2 [47]. As the pre-computed optical flow
between It and It−τ might be sub-optimal for propagating
representations across feature maps ft and ft−τ , we introduce
a shallow flownet that learns to refine the initial flow, guided
by the final panoptic segmentation objectives. The shallow
flownet takes the concatenation of the 2-channel initial flow
φinitt→t−τ , and the 256-channel target and reference feature
maps (total 514 channels). It is composed of four 3 × 3
convolutional layers whose output channel size is 64, 64, 32,
and 2, respectively. The final feature flow φt→t−τ is used to
warp the reference feature onto the target feature, denoted by
ft−τ→t.

Attend module is given a pair of the spatially aligned
features ft and ft−τ→t, and learns to re-weight and merge
them into one. Inspired by [48], we first compute the pixel-
wise frame similarity between ft and ft−τ→t based on the
per-pixel inner-product operation as

tAtt = σ(ε(ft) · ε(ft−τ→t)), (2)

where σ is a sigmoid function and ε is an embedding layer with
3× 3 kernel. The attention map tAtt is of the same size with
ft−τ→t and represents per-pixel confidence of the reference
feature map. tAtt and ft−τ→t are element-wise multiplied and
concatenated with ft along a temporal dimension resulting in
a tensor shape 2 × height × width × channel. A following
2×3×3 convolution layer reduces the time dimension into one
which is the output feature of fuse head gt. Finally, the target
frame features {p2, p3, p4, p5}t are augmented by resizing-
and-adding gt to all multi-scale features, and these augmented
features are fed into the downstream detection, segmentation,
and tracking heads. Similarly, the reference frame features are
augmented by the target frame features.

2) Contrastive Track Head with Hard Examples: Follow-
ing the temporally augmented feature maps is a Track head
that predicts the instance correspondences between the two
frames.

The goal of Track head is to find object-object correspon-
dences between two frames. Suppose there are M instances
identified in the reference frame. Then new detected boxes
from the target frame can only be associated with one of the
M previous identities or assigned a new identity.

We formulate this as 1-vs-others discrimination problem.
Specifically, the similarity is learned between each target RoI
feature embedding ri from It and the reference M+1 RoI
feature embeddings rj=0,...,M from It−τ which represent the
M already identified objects (j=1,...,M) and a new object
which is denoted by a zero vector r0.

We propose to learn such regional embeddings using the
contrastive loss and hard example mining. Hard example
mining is known to be crucial for embedding learning, as most
examples are easy and do not contain much information to
improve the model. For each target RoI embedding (anchor)
ri, we sample top-Nh negative samples from reference em-
beddings rj by their distances to anchor. Since the number

Fig. 5: Bi-directional Fuse head. The default Fuse head per-
forms feature transformation in single direction from reference
to target frame, which may lead to inconsistency between the
two frame features. We propose bi-directional fusion between
ft and ft−τ to obtain more balanced feature maps between
different time steps.

of reference RoIs, M , is variable during training, we set
Nh = min(4,M). We use supervised contrastive learning [49]
with noise contrastive estimation loss [50] as

Lcontra track = −
∑
i

log
eA(fi,fyi )

eA(fi,fyi ) + C
∑
j∈Nh e

A(fi,fj)

(3)
where C represents a weighting parameter, Nh the hard
negative examples and A is defined as the cosine distance
function:

A(ri, rj) :=
1

λ
(
ri
||ri||

)
T
(
rj
||rj ||

) (4)

where λ is the temperature. Summation over hard examples
allows the loss to focus on difficult cases and perform better.
We use an external dictionary to store the reference RoI
embeddings where we update or extend the memory when
a new candidate box is assigned with an instance label.

The target and reference RoI feature embeddings are based
on the enhanced features from the Bi-directional Fuse head,
i.e., gt and gt−τ . Therefore, from a standpoint of the instance
tracking, VPSNet++ synchronizes the tracking on both pixel-
level and object-level. The pixel-level fusion aligns local
feature of the instance to transfer it between the reference and
target frames, and the object-level Track head focuses more on
distinguishing the target instance from other reference objects
by learning similarities among the temporally augmented RoI
features.

During the inference stage, we add an additional cue coming
from the panoptic head: the IoU of things logits. The IoU of
instance logits can be viewed as a deformation factor or spatial
correlation between frames and our experiments show that it
improves the video panoptic quality for things classes.

3) Panoptic Edge Learning: Inspired by several prior
works [51], [52] that train a model with both segmentation
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masks and semantic/instance boundaries to improve the seg-
mentation quality, we propose to learn a holistic panoptic
boundary as an auxiliary task during training. The panoptic
boundary prediction aims at differentiating all thing and stuff
identities, and helps delineating the overlapping objects and
complex scene elements. Moreover, the ground truth comes
at no cost from the given panoptic segmentation annotations.
We use the Laplacian operator to generate soft boundaries and
threshold at 0 to convert them into a single ground-truth edge
map St.

We construct the input tensor Uedge by combining semantic
and instance segmentation logits. For stuff classes, we directly
use the semantic segmentation logits of the corresponding
channels. For any thing instance, we take its mask logits from
the mask head which is of size 28× 28, and interpolate back
to the same scale H ×W via bilinear interpolation and zero-
padding outside its ground truth box. All stuff and thing logits
are concatenated and are fed to the Edge head fedge which
consists of three 3× 3 convolution layers with output channel
size 16, 16 and 1, respectively. A sigmoid activation σ is
appended at the last layer and the Edge head is trained with
Dice loss [53]:

Lpan edge = Dice(St, σ(fedge(U
t
edge))). (5)

Note that the panoptic Edge head is only trained as an auxiliary
task head, but not used during inference.

4) Panoptic Tube Id Discrimination Learning: Given the
predicted panoptic feature map U t, We use a per-pixel identity
discrimination loss to help learning to discriminate different
mask segments of all thing and stuff classes. To this end, we
compute representative embedding vectors for all segments
in a frame. Specifically, we use the ground truth thing and
stuff masks to spatially pool the predicted panoptic feature
map for all individual segments. This results in Nseg segment-
level embeddings {uti}. We also construct the segment-level
embeddings at t− τ , and only take those embeddings {ut−τj }
when segment j is stuff class, or has the same tracking
ID with one of {uti} by using the ground truth tracking
labels. These associated (tracked) embeddings are element-
wise averaged, and now the merged representations are the
tube-level embeddings {ut|t−τi } (see Fig. 6).

We enforce each pixel feature U th,w to perform segment ID
discrimination task where each pixel should correctly identify
which segment embedding out of Nseg it corresponds to. We
use the per-pixel contrastive loss as:

Ltube disc = −
∑
h,w

log

∑
imi,h,w · e(u

t|t−τ
i ·Uth,w)∑

i e
(u
t|t−τ
i ·Uth,w)

, (6)

where mi,h,w is non-zero only when pixel (h,w) corresponds
to the ground truth tube id i. The per-pixel loss is applied to all
thing and stuff pixels in a frame t. The tube-level contrastive
learning encourages features from the same tube identity to
be similar (both spatially and temporally) and features from
different tubes to be distinct, which aligns well with the aim
of video panoptic segmentation.

Our panoptic tube id discrimination loss is inspired by
previous works [54], [55], [49], [56], [57]. They discriminate

Fig. 6: Tube-level embeddings. We use the ground truth thing
and stuff masks to spatially pool the predicted panoptic feature
map for all individual segments. The mask-pooled features
from two frames are element-wise averaged to construct the
tube-level representation embeddings. These embeddings are
used for the spatial-temporal pixel embedding learning, i.e.,
panoptic tube id discrimination learning.

only thing instances either unsupervisedly or within a single
image. Unlike theirs, we perform a complete thing-and-stuff
discrimination learning is spatial-temporal, both within a frame
and across frames, which is exactly the property required
for video panoptic segmentation. Also note that the tube id
discrimination learning is only used during training, but not
used at inference.

D. Implementation Details

We follow most of the settings and hyper-parameters of
Mask R-CNN [19] and other panoptic segmentation models
such as UPSNet [5]. Hereafter, we only explain those which
are different. Throughout the experiments, we use ResNet-50
FPN [58], [46] as the feature extractor.

1) Training: We implement our models in PyTorch [59]
with MMDetection [60] toolbox. We use the distributed train-
ing framework with 8 GPUs. Each mini-batch has 1 image
per GPU. We use the ground truth box of a reference frame
to train the track head. We crop random 800×1600 pixels out
of 1024 × 2048 Cityscapes and 1080 × 1920 VIPER images
after randomly scaling each frame by 0.8 to 1.25 ×. Due to
the high resolution of images, we downsample the logits for
semantic head and panoptic head to 200× 400 pixels.

Besides the RPN losses, training of the image panoptic
segmentation network (Lips) contains loss functions for 3
task-related heads: bounding box head (classification and
regression), mask head, and semantic head. The objectives
of our VPSNet++ (Lvps++) contains additional losses for the
proposed contrastive tracking (Lcontra track), panoptic edge
learning (Lpan edge) and tube-level discrimination learning
(Ltube disc). We set all loss weights to 1.0 to make their scales
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Model feat. feat. obj. PQ PQTh PQSt

variant align attend match
Base 52.1 47.2 56.2
Align X 52.3 47.3 56.4
Attend X 50.7 45.8 54.8
Fuse X X 53.0 48.3 57.0
Track X 53.0 47.9 57.2
FuseTrack X X X 55.4 52.2 58.0

TABLE II: Image panoptic segmentation results on VIPER.

Method Backbone PQ PQTh PQSt

AUNet [4] ResNet-101 59.0 54.8 62.1
PanopticFPN [3] ResNet-101 58.1 52.0 62.5
DeeperLab [13] Xception-71 56.5 - -
Seamless [10] ResNet-50 59.8 54.6 63.6
AdaptIS [61] ResNet-50 59.0 55.8 61.3
TASCNet [9] ResNet-50 55.9 50.6 59.8
UPSNet [5] ResNet-50 59.3 54.6 62.7
TASCNet+CO [9] ResNet-50 59.2 56.0 61.5
UPSNet+CO [5] ResNet-50 60.5 57.0 63.0
VPSNet-Base+CO ResNet-50 60.6 57.0 63.2
VPSNet-Fuse+CO ResNet-50 61.6 57.7 64.4
VPSNet-Fuse+VP ResNet-50 62.2 58.0 65.3

TABLE III: Image panoptic segmentation results on
Cityscapes val. set. ‘+CO’ and ‘+VP’ indicate the model is
pretrained on COCO and VIPER, respectively.

to be roughly on the same order of magnitude:

Lips = Lclass + Lbox + Lmask + Lsemantic + Lpanoptic,

Lvps++ = Lips + Lcontra track + Lpan edge + Ltube disc.
(7)

We set the learning rate and weight decay as 0.005 and
0.0001 for all datasets. For VIPER, we train for 12 epochs and
apply lr decay at 8 and 11 epochs. For both Cityscapes and
Cityscapes-VPS, we train for 144 epochs and apply lr decay
at 96 and 128 epochs. For the pretrained models, we import
COCO- or VIPER-pretrained Base model parameters and
initialize the remaining layers, e.g., Fuse (align-and-attend)
head, Track head and Edge head, by Kaiming initialization.

2) Inference: Given a new testing video, our VPSNet++
processes each frame sequentially in an online fashion. At each
frame, our VPSNet++ first generates a set of instance hypothe-
ses. As a mask pruning process, we perform the class-agnostic
non-maximum suppression with the box IoU threshold as 0.5
to filter out some redundant boxes. Then the remaining boxes
are sorted by the predicted class probabilities and kept if the
probability is larger than 0.6. For the first frame of a video
sequence, we assign instance ids according to the order of
the probability. For all other frames, the remaining boxes
after pruning are matched to identified instances from previous
frames based on the learned affinity A, and are assigned an in-
stance id accordingly. After processing all frames, our method
produces a sequence of panoptic segmentation outputs, each
pixel of which contains a unique category label and instance
id label throughout the sequence. For both image panoptic
quality (IPQ) and video panoptic quality (VPQ) evaluation,
we test all available models with single-scale testing.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results on the
two proposed video-level datasets, VIPER and Cityscapes-
VPS, as well as the conventional image-level Cityscapes
benchmark. In particular, we mainly investigate the results in
two aspects: image-level prediction and cross-frame associ-
ation, which will be reflected in the IPQ and VPQ, respec-
tively. We demonstrate the contributions of each component
of VPSNet++. Here is the information on the datasets used in
experiments.
• VIPER: Based on its high quantity and quality of the

panoptic video annotation, we mainly experiment with
this benchmark. We follow the public train / val split.
For evaluation, we choose 12 validation videos from day
scenario, and use the first 50 frames of each videos: total
600 images.

• Cityscapes: We use the public train / val split, and
evaluate our image-level model on the validation set.

• Cityscapes-VPS: The created video panoptic annotations
are given with the 500 validation videos of Cityscapes.
We further split these videos into 400 training, 50 val-
idation, and 50 test videos. Each video consists of 30
consecutive frames, with every 5 frames paired with the
ground truth annotations. For each video, all 30 frames
are predicted, and only the 6 frames with the ground truth
are evaluated.

A. Image Panoptic Quality

Before delving into the video (spatial-temporal) quality of
panoptic segmentation outputs, we first evaluate whether the
VPS learning improves per-frame (spatial) panoptic quality.
We use the existing panoptic quality (PQ), recognition quality
(RQ), and segmentation quality (SQ) for the evaluation. The
results are presented in Table. II and Table. III.

First, we study the importance of the proposed Fuse and
Track modules to our image-level panoptic segmentation
performance on the VIPER dataset as shown in Table. II.
We find that both pixel-level and object-level modules have
complementary contributions, each improving the baseline by
+1% PQ. Without any of them, the PQ will drop by -3.4%.
The best PQ was achieved when these two modules are used
together.

We also experiment on the Cityscapes benchmark, to pro-
vide a comparison with the state-of-the-art panoptic segmen-
tation methods. Note we can only ‘Track’ model cannot be
trained in this setting, without tracking annotations in the
Cityscapes dataset. Instead, we report ‘Fuse’ model results
as it only requires a neighboring reference frame without any
extra annotations. In Table. III, we find that our Fuse model
outperforms the state-of-the-art baseline method [5] by +1.0%
PQ, which implies that it effectively exploits spatial-temporal
context to improve per-frame pixel features. The pretraining
on the VIPER dataset shows its complementary effectiveness
to either COCO or Cityscapes dataset by boosting the score by
+1.6% PQ from our baseline, achieving 62.2% PQ. We also
converted our results into semantic segmentation format, and
achieved 79.0% mIoU.
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Fig. 7: Video panoptic segmentation results of VPSNet++ on the VIPER (top two rows) and Cityscapes-VPS (bottom
two rows) sequences. Each row has four sampled frames from a video sequence. Objects with the same predicted identity
have the same color.

Model Tracking Improvement Temporal window size VPQ
variant method method k = 0 k = 5 k = 10 k = 15
Track All methods - 48.1 / 38.0 / 57.1 49.3 / 45.6 / 53.7 45.9 / 37.9 / 52.7 43.2 / 33.6 / 51.6 46.6 / 39.0 / 53.8
FuseTrack Cls-Sort - 49.8 / 40.3 / 57.7 29.8 / 0.9 / 53.8 29.1 / 0.7 / 52.8 28.8 / 0.5 / 52.3 34.4 / 10.6 / 54.2
FuseTrack IoU-Match - 49.8 / 40.3 / 57.7 44.4 / 33.1 / 53.8 40.0 / 24.5 / 52.8 37.8 / 20.5 / 52.3 43.0 / 29.6 / 54.2
FuseTrack Feat-Match - 49.8 / 40.3 / 57.7 50.4 / 46.4 / 53.8 45.7 / 37.1 / 52.8 43.5 / 33.0 / 52.3 47.4 / 39.2 / 54.2
FuseTrack All methods - 49.8 / 40.3 / 57.7 51.6 / 49.0 / 53.8 47.2 / 40.4 / 52.8 45.1 / 36.5 / 52.3 48.4 / 41.6 / 54.2
VPSNet++ All methods a. Bi-Fuse 50.5 / 40.8 / 58.6 52.9 / 50.8 / 54.8 48.5 / 42.3 / 53.4 46.4 / 38.6 / 52.8 49.5 / 43.1 / 54.9
VPSNet++ All methods b. Contra-Track 49.8 / 40.4 / 57.7 52.7 / 51.2 / 53.8 48.0 / 42.1 / 52.8 45.7 / 37.7 / 52.4 49.1 / 42.9 / 54.2
VPSNet++ All methods c. Pan-Edge 50.2 / 40.7 / 58.1 52.2 / 49.6 / 54.3 47.8 / 41.2 / 53.3 45.8 / 37.3 / 52.8 49.0 / 42.2 / 54.6
VPSNet++ All methods d. Tube-Disc 50.7 / 41.1 / 58.7 53.2 / 51.0 / 55.0 48.7 / 42.8 / 53.6 46.4 / 38.6 / 52.8 49.8 / 43.6 / 55.0
VPSNet++ All methods e. a + d 51.1 / 41.9 / 58.8 53.3 / 51.2 / 55.0 49.1 / 43.8 / 53.6 47.0 / 39.7 / 53.0 50.1 / 44.1 / 55.1
VPSNet++ All methods f. a + b + c + d 51.4 / 42.5 / 58.8 53.7 / 52.0 / 55.1 49.5 / 44.4 / 53.7 47.4 / 40.5 / 53.1 50.5 / 44.8 / 55.2

TABLE IV: Video panoptic segmentation results on VIPER dataset. Each cell contains VPQ / VPQTh / VPQSt scores.

B. VPSNet++ Results

To demonstrate the effectiveness of our proposed VP-
SNet++, we conduct experiments on the VIPER and
Cityscapes-VPS datasets. We evaluate the video panoptic
quality (VPQ) scores and report them in Table. IV, Table. V
and Table. VI. The visualization of video segmentation and
flow refinement results of VPSNet++ is shown in Fig. 7 and
Fig. 8.

Note that VPSNet++ is identical to the FuseTrack model
except its improvement method(s) (denoted as a. - f. in the
tables). Across all experiments, the mean VPQ of things
classes (VPQTh) is generally lower than that of stuff classes
(VPQSt), as it is required extra consistency in instance ids over

time. We also discuss ablation studies and visualization results.

1) Baseline Results: We present several baseline video
panoptic segmentation methods. The baseline methods are the
Track and FuseTrack variants of the default VPSNet. We first
experiment on the VIPER dataset by enumerating different
tracking methods: associating objects based on the distance
between their classification logit values (Cls-Sort), flow-guided
object matching by mask IoU (IoU-Match), and the RoI
feature similarity based matching by the default Track head
(Feat-Match). First, Cls-Sort relies on semantic consistency
of the same object between frames. However, it fails to track
objects possibly because there are a number of instances of
the same class in a frame, e.g., car, person, thus making the
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Model Improvement Temporal window size VPQ
variant method k = 0 k = 5 k = 10 k = 15
Track - 63.1 / 56.4 / 68.0 56.1 / 44.1 / 64.9 53.1 / 39.0 / 63.4 51.3 / 35.4 / 62.9 55.9 / 43.7 / 64.8
FuseTrack - 64.5 / 58.1 / 69.1 57.4 / 45.2 / 66.4 54.1 / 39.5 / 64.7 52.2 / 36.0 / 64.0 57.0 / 44.7 / 66.0
VPSNet++ a. Bi-Fuse 64.6 / 58.1 / 69.3 58.3 / 46.0 / 67.2 55.3 / 40.4 / 66.2 53.7 / 36.8 / 66.0 57.9 / 45.3 / 67.2
VPSNet++ b. Contra-Track 65.0 / 58.3 / 69.9 57.6 / 45.6 / 66.4 54.8 / 40.3 / 65.3 52.9 / 36.5 / 64.8 57.6 / 45.2 / 66.6
VPSNet++ c. Pan-Edge 64.8 / 58.2 / 69.5 57.8 / 45.2 / 66.4 54.5 / 39.8 / 65.0 52.6 / 36.2 / 64.5 57.4 / 45.1 / 66.4
VPSNet++ d. Tube-Disc 65.0 / 58.3 / 70.0 58.1 / 46.1 / 66.9 55.2 / 40.2 / 66.1 53.4 / 36.6 / 65.6 57.9 / 45.2 / 67.2
VPSNet++ e. a + d 65.4 / 58.2 / 70.7 58.8 / 46.2 / 67.9 55.3 / 40.3 / 66.2 53.4 / 36.6 / 65.6 58.2 / 45.3 / 67.6
VPSNet++ f. a + b + c + d 65.6 / 58.3 / 70.9 59.1 / 46.5 / 68.2 55.6 / 40.5 / 66.5 53.5 / 36.7 / 65.8 58.4 / 45.5 / 67.9

TABLE V: Video panoptic segmentation results on Cityscapes-VPS val set. Each cell contains VPQ / VPQTh / VPQSt

scores. Note that while benchmarking our Cityscapes-VPS dataset, we further split our data into 400/50/50 (train/val/test)
videos, which result in different performances to those reported in the CVPR 2020 version.

Model Temporal window size VPQ
variant k = 0 k = 5 k = 10 k = 15
Track 63.1 / 58.0 / 66.4 56.8 / 45.7 / 63.9 53.6 / 40.3 / 62.0 51.5 / 35.9 / 61.5 56.3 / 45.0 / 63.4
FuseTrack 64.2 / 59.0 / 67.7 57.9 / 46.5 / 65.1 54.8 / 41.1 / 63.4 52.6 / 36.5 / 62.9 57.4 / 45.8 / 64.8
VPSNet++ 65.7 / 59.9 / 69.4 59.1 / 47.3 / 66.6 55.5 / 41.8 / 64.3 53.5 / 37.7 / 63.6 58.5 / 46.7 / 66.0

TABLE VI: Video panoptic segmentation results on Cityscapes-VPS test set. Each cell contains VPQ / VPQTh / VPQSt

scores.

Fig. 8: Effect of flow refinement in Fuse head. Example results of (b) initial optical flow computed from FlowNet2 [47]
and (c) refined feature flow and (d) predicted residual flow after training for video panoptic segmentation. The structure of the
scene is more pronounced in the refined feature flow.

class logit information not enough for differentiating these
instances. On the other hand, IoU-Match is a simple yet
strong candidate method for our task by leveraging spatial
correlation to determine the instance labels, improving the
Cls-Sort by +8.6% VPQ. The RoI feature matching (Feat-
Match) performed by the Track head is based on the object
appearance and is more robust to occlusions than IoU-Match.
This improves VPQ by + 4.4%. Our final tracking method
combines all three methods and achieves the best performance
of 48.4% VPQ (i.e., a further gain of +1.0% VPQ). This setting
is used throughout the remaining experiments.

2) Bi-directional Fuse Head: We first confirm the effec-
tiveness of pixel-level feature fusion by comparing the default
Track and FuseTrack variants. Adding Fuse head leads to a
gain of +1.8% VPQ on VIPER and +1.1% VPQ on Cityscapes-
VPS dataset.

Our proposed Bi-directional Fuse head in VPSNet++ (de-
noted as ‘a. Bi-Fuse’ in the tables) further improves this by
+1.1% VPQ on VIPER and +0.9% VPQ on Cityscapes-VPS
dataset, demonstrating its benefit of making the reference and
target features more compatible to each other, and helping
feature similarity learning in Track head.

In Fig. 8, we visualize how the learnable feature flow is
refined over the initial optical flow from the off-the-shelf

FlowNet2. We can observe that the structure of the scene
is more pronounced in the refined feature flow indicating
that the pre-computed flow may not be optimal to find pixel
correspondences for panoptic features.

3) Contrastive Track Head: The Track head of Yang
et al. [30] learns object tracking by predicting multi-class
classification where the classification labels are constructed
by the previously detected object ids from the reference
frame. We propose a noise contrastive estimation (NCE) loss
function to model this 1 vs others discrimination problem and
enabled hard example mining. In Table. IV and Table. V,
we compare the default Track head (FuseTrack), and our
contrastive learning Track head (b. VPSNet++ with Contra-
Track). Note the only difference between the to models is in
the use of default vs Contrastive Track head. Contra-Track
with the proposed NCE loss and hard negative mining allows
focusing on difficult tracking scenarios, e.g., occluded car and
person (see Fig. 9), and leads to a gain of +0.7% VPQ on
VIPER and +0.6% VPQ on Cityscapes-VPS.

4) Panoptic Edge Learning: The improvement by panop-
tic edge learning is denoted as ‘c. Pan-Edge’ in the tables.
Note that the edge head for the auxiliary tasks is not used
during inference, thus the use of auxiliary task does not burden
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Fig. 9: Result visualization of (a) VPSNet vs (b) VPSNet++ with ResNet-50 backbone on Cityscapes-VPS val set. With the
given consecutive time steps t-1 (top) and t (bottom), we show two video panoptic segmentation results, which are predicted
from (a) the base VPSNet [14] and (b) VPSNet++ equipped with the Bi-directional Fuse head, contrastive learning based Track
head and panoptic Edge prediction head. Although the Edge head is not necessary during inference, we visualize the predicted
panoptic boundaries (c).

the model deployment. With the ability to estimate panoptic
boundaries, our VPSNet++ can detect borders between dif-
ferent thing instances or between semantic classes, and thus
can generate more accurate segmentation maps (see Fig. 9)
Pan-Edge improves VPQ by +0.6% on VIPER and +0.4% on
Cityscapes-VPS.

5) Panoptic Tube Id Discrimination Learning: The tube
id discrimination learning alone outperforms FuseTrack by a
healthy margin of +1.4% VPQ on VIPER and +0.9% VPQ on
Cityscapes-VPS. Learning to discriminate different thing and
stuff identities among the video panoptic features allows the
well-clustered feature embedding, significantly contributing to
the video panoptic segmentation.

6) VPSNet++ with All Improvements: Among the im-
provement methods of VPSNet++, the Bi-directional Fuse
head (a. Bi-Fuse) and the Tube Id Discrimination learning
(d. Tube-Disc) are the two strongest contributors. Combining
these two improvements (e. a + d) achieves a significant gain
of +1.7% VPQ on VIPER and +1.4% VPQ on Cityscapes-
VPS over the FuseTrack model. Finally, Combining all the
proposed improvements (f. a + b + c + d) improves this further
by +0.4% VPQ on VIPER and +0.2% VPQ on Cityscapes-
VPS. Compared to the FuseTrack baseline, our VPSNet++
improves this by +2.1% (50.5%) VPQ on VIPER, +1.4%
(58.4%) VPQ on Cityscapes-VPS val set, and +1.1% (58.5%)
VPQ on Cityscapes-VPS test set.

VII. DISCUSSION AND CONCLUSION

We present a new task named video panoptic segmentation
(VPS). We contribute to the new benchmark by proposing
1) datasets 2) evaluation metric (VPQ) and 3) network ar-
chitectures. We find several challenges still remaining for
our new task. First, even the state-of-the-art video instance

tracking algorithm [30] and our VPSNet and VPSNet++
suffer a considerable performance drop as the temporal length
increases. In the context of video, possible improvements are
expected to made on handling a large number of instances
and resolving overlaps between these objects, e.g., Fig. 7-
(2nd row), by better modeling the temporal information [38],
[27]. Second, our task is still challenging for stuff classes as
well considering the fact that the window size of 15 frames
represents only 0.5 ∼ 1 second in a video. The mutual
exclusiveness between things and stuff class pixels could be
further exploited to encourage both semantic segmentation and
instance segmentation to regularize each other.

Other important research directions include improving the
efficiency of an algorithm as in several video segmentation
approaches [25], [26], [62], learning a Transformer-based
video network [63], and extending to include depth estimation
ability [64].
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