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Abstract In this paper, we propose an end-to-end con-
volutional neural network (CNN) for stereo matching

with color and monochrome cameras, called CMSNet
(Color and Monochrome Stereo Network). Both cam-
eras have the same structure except for the presence of

a Bayer filter, but have a fundamental trade-off. The
Bayer filter allows capturing chrominance information
of scenes, but limits a quantum efficiency of cameras,
which causes severe image noise. It seems ideal if we

can take advantage of both the cameras so that we ob-
tain noise-free images with their corresponding dispar-
ity maps. However, image luminance recorded from a

color camera is not consistent with that from a monochrome
camera due to spatially-varying illumination and differ-
ent spectral sensitivities of the cameras. This degrades

the performance of stereo matching. To solve this prob-
lem, we design CMSNet for disparity estimation from
noisy color and relatively clean monochrome images.
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CMSNet also infers a noise-free image with the esti-
mated disparity map. We leverage a data augmentation

to simulate realistic signal-dependent noise and various
radiometric distortions between input stereo pairs to
train CMSNet effectively. CMSNet is evaluated using

various datasets and the performance of our disparity
estimation and image enhancement consistently outper-
forms state-of-the-art methods.

Keywords Stereo matching · disparity estimation ·
image enhancement · convolutional neural network

1 Introduction

As the computing power of hand-held devices grows,
multi-camera setups (Hua 2016; V50 2019; Gal 2019;

iPh 2018) have become available and those allow us to
acquire scene depths from simultaneously captured im-
ages. Interestingly, the commercial products have asym-
metric camera configurations (Shen et al 2017) which

have different field-of-views (FOVs) (V50 2019; Gal 2019;
iPh 2018) or different spectral properties (Hua 2016).
Among them, the RGB-Monochrome setup has been
commercialized, e.g., Huawei P9, P10, and P20 series (Hua
2016). In this system, a color camera has a Bayer color
filter in front of an image sensor to separate the incom-
ing light into one of three primary colors (red, green,
or blue) by filtering the light spectra according to cor-
responding wavelength ranges. Although this process
is effective to capture color information, it amplifies
image noise in low-light conditions because the array
occludes a lot of incoming light. Unlike color cameras,
monochrome cameras receive all the incoming light at

each pixel and need no demosaicing process. There-
fore, those have much better light efficiency and pro-
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vide sharper images than Bayer-filtered color cameras
within the same spectral band as illustrated in Fig. 1.

In this paper, we present a stereo matching and col-
orization network that takes advantage of both color
and monochrome cameras. Our CMSNet achieves the
color sensing capability on color cameras and light effi-
ciency on monochrome cameras. However, a non-linear
spectral sensitivity between the asymmetric image pairs
makes it hard to find accurate correspondences (Jeon
et al 2016). To tackle this issue, we leverage convolu-
tional neural network (CNN) for stereo matching and
high-quality color image recovery from a single Color-
Monochrome image pair. We call this end-to-end net-
work as CMSNet. Our CMSNet consists of four sub-
networks: (1) disparity estimation, (2) RGB and monochrome
image denoising, (3) occlusion detection, and (4) col-
orization. We first estimate a disparity map from an
RGB-Monochrome image pair, and denoise each input
image. With the estimated disparity map, we make an
initial recovered color image by transferring chromi-
nance of the denoised color image into the denoised

monochrome image. The initial recovered color image
suffers from color bleeding errors due to occluded re-
gions between stereo images or inaccurate disparities.

In order to correct the errors, CMSNet infers an occlu-
sion map from the input image pair, then it produces
a final high-quality color image using the colorization

network.
This paper is an extended version of our previous

work that devises an iterative stereo matching and prop-
agates chrominance channels of an input color image

with the estimated disparity map to an input monochrome
image. Inspired by (Jeon et al 2016), CMSNet takes an
end-to-end deep network which allows us to simulta-

neously infer a disparity map and a high-quality color
image within short inference time. Additionally, this pa-
per provides more in-depth analysis and experimental
results to validate the effectiveness of CMSNet.

The reminder of the paper is organized as follows.
In Section 2, we review state-of-the-art low-light imag-
ing and cross-spectral/multi-modal stereo matching meth-
ods. In Section 3, we describe the advantages of our pro-
posed color and monochrome stereo system. We present
CMSNet including its analysis and implementation de-
tails in Section 4. We then show the robustness of our
approach compared to the other algorithms in Section 5.
Finally, we draw conclusions in Section 6.

2 Related Work

This work is related to low-light photography, cross-
spectral stereo matching, and colorization. Prior to in-
troducing previous studies, we refer the reader to the
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Fig. 1 (a) Spectral sensitivity of the color and monochrome
camera (Fle 2017) used in our prototype stereo system. (b)
An example image pair captured by our stereo system. Note
that there is visible difference of image noise due to the gap
of light-efficiency between two cameras.

work (Hirschmüller and Scharstein 2009) for the com-
prehensive discussion of stereo matching with radiomet-
ric and noise variations.

2.1 Low-light Photography

There are various ways to take high-quality photos in
low-light environments. The most straightforward way
is a single image denoising (Dabov et al 2007; Buades

et al 2005), but it often suffers from over-smoothing ar-
tifacts. The over-smoothing artifacts come mostly from
a relatively large window of neighboring pixels to sup-

press severe noise. Single image-based approaches have
been recently boosted up via CNN architectures (Zhang
et al 2017a; 2018).

As an alternative way, multiple image averaging meth-

ods have gained research interests (Liu et al 2014; Hasi-
noff et al 2016). Well-aligned images are beneficial for
image denoising because they take an align-and-average
strategy in usual. Using a burst mode of off-the-shelf
cameras, sequential images are captured with short and
consistent exposure times, and then those are merged
by a local homography (Liu et al 2014) and a sub-pixel
alignment in frequency domain (Hasinoff et al 2016).
Even though short and consistent exposure allows the
methods to easily find correspondences between input

images, such images may include many under-exposed
regions.

High dynamic range (HDR) (Reinhard et al 2010)

and exposure fusion (Mertens et al 2009) have been
considered as the most representative solution to the
under-exposure problem. In addition, these recent meth-
ods address the challenges of varying exposure with so-
phisticated alignment and inpainting (Gallo et al 2009;
Hu et al 2013). However, the performance is not guar-
anteed for datasets with fast non-rigid parts of scenes
which cause inaccurate merging results, even with the
advanced CNN-based alignment in (Im et al 2019a).
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2.2 Cross-channel and Multi-spectral Stereo

Cross-spectral stereo matching has been extensively stud-
ied to find correspondences of either multi-modal or
color-inconsistent stereo images. Heo et al. (Heo et al
2011) analyzed a color formation model and proposed
an adaptive normalized cross correlation for stereo match-
ing, which is robust to various radiometric changes. It
is extended in (Heo et al 2013), which presented an iter-
ative framework to simultaneously achieve both depth
estimation and color consistency. Pinggera et al. (Ping-
gera et al 2012) presented depth map estimation with
cross-spectral stereo images, which uses dense gradient
features based on the HOG descriptor (Dalal and Triggs
2005). Kim et al. (Kim et al 2015) designed a dense de-
scriptor for multi-modal correspondences by leveraging
an adaptive self-correlation measure and a randomized
receptive field pooling. Holloway et al. (Holloway et al
2015) proposed an assorted camera array and a cross-
channel point correspondence measure using a normal-
ized gradient cost. In (Zhi et al 2018; Liang et al 2019),

unsupervised CNN architectures are proposed for stereo
matching with RGB-NIR image pairs. Both the meth-
ods devise their own spectral translation networks to
convert an RGB image into a pseudo-NIR image and

left-right consistencies based on the estimated disparity
map to handle the matching problem in large appear-
ance changes in different spectra.

Compared to the previous studies, we focus on si-
multaneously reconstructing an accurate disparity map
and a noise-free color image with a color and monochrome

image pair. We achieve this by taking the advantage of
our cross-spectral stereo system. We present a CNN
architecture with depth supervision which consists of
three encoder-decoder structures for disparity estima-

tion, occlusion detection, and colorization-based color
image recovery as well as one denoising network. As will
be demonstrated in the experiment section in Section 5,
our method is highly effective for accurate disparity es-
timation and largely outperforms the state-of-the-art
algorithms (Heo et al 2011; 2013; Kim et al 2015; Hol-
loway et al 2015; Zhi et al 2018). In colorization, most
approaches concentrate on propagating limited num-
bers of user-defined seeds, while we have lots of seed
pixels with outliers around occlusion boundaries. To
handle this issue, we introduce an occlusion map to
correct inaccurate seed pixels and successfully recover
a high-quality color image.

2.3 Colorization

Colorization is a process of adding color channels to

grayscale image and video. Levin et al. (Levin et al

2004) presented a user-guided colorization method which
takes partial color information from user scribbles and
automatically propagates the given seed color to make
a complete color image. Yatziv and Sapiro (Yatziv and
Sapiro 2006) proposed a fast colorization method using
a geodesic distance between neighboring pixels. Gastal
and Oliveira (Gastal and Oliveira 2011) introduced an
edge-aware filter in a transformed domain and presented
colorization results. Zhang et al. (Zhang et al 2016)
showed that a CNN is able to automatically predict
color values from a single grayscale image without any
user interaction. In (Zhang et al 2017b), a CNN ar-
chitecture learns an initial seed suggestion and propa-
gation of the initial seed accurately. Irony et al. (Irony
et al 2005) proposed an example-based colorization with
an assumption that similarly textured regions have sim-
ilar colors. A CNN version of the example-based col-
orization is proposed in (He et al 2018). The work com-
putes a similarity score between reference images and
unaligned target images to infer aligned chrominance
channels prior to colorization.

Another related work is (Chakrabarti et al 2014),
which presented the concept of an alternative camera
sensor that samples color information very sparsely.
They recover a full color image by propagating the

sparsely sampled colors into an entire image. This work
shares the same philosophy with our work that takes the
advantage of light-efficient monochrome sensors but the

method may suffer from color noise which leads to an
erroneous color image. In (Dong et al 2019), a CNN-
based colorization in color-monochrome stereo system
is proposed. The CNN computes weighted average of

colors of candidate pixels in reference image for initial
chrominance assignments, and a color residual module
to correct inaccurate assigned pixels caused by occluded
areas. We adopt similar ideas to a stereo system and ob-
tain an accurate depth-map and a noise-free color image
simultaneously.

3 Color/Monochrome Stereo System

Most color cameras use a color filter array called a
Bayer array to capture color information. The Bayer
array is positioned over the pixels of an image sensor
and separates the incoming light into one of three pri-
mary colors (red, green, or blue) by filtering the light
spectra according to corresponding wavelength ranges.
This process is effective to capture color information,
but it amplifies image noise in low-light conditions since
the array occludes a lot of incoming light. It may also
reduce image sharpness by an anti-aliasing filter or op-
tical low-pass filter to avoid aliasing or moiré artifacts

during the demosaicing process (Kimmel 1999).
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Fig. 2 Illustration of our CMSNet architecture. Given color and monochrome stereo pair, the disparity estimator (blue) yields
disparity map corresponding to the left monochrome image, and the sub-network for denoising (yellow) removes image noise.
With the estimated disparity map and denoised images, the colorization sub-network makes a high-quality color image. At
this point, the occlusion estimator (orange) infers an occlusion map to handle color bleeding errors which is used for the
colorization. -,W and C denote a subtraction, warping and concatenation along with a channel axis.

Unlike color cameras, monochrome cameras receive
all the incoming light at each pixel and need no de-
mosaicing process. Therefore, those have much better

light efficiency and provide sharper images. In Fig. 1, we
compare the imaging quality of a color and a monochrome
camera. The comparison of spectral sensitivity (Fig. 1(a))
and the example image pair captured in the same con-

dition (Fig. 1(b)) prove the large difference of light ef-
ficiency and image quality between two cameras. That
is, a color and monochrome camera pair are highly suit-

able to achieve a noise-free color image in addition to
accurate depth estimation.

4 Deep Color and Monochrome Stereo Network

We present a color and monochrome stereo network
whose final goal is to simultaneously output a disparity
map and a high quality color image. The proposed net-
work consists of four sub-networks: disparity, occlusion,
denoising, and colorization networks. The first three
networks take the color and monochrome stereo images
as input in order to compute a disparity map, an occlu-
sion map, and recovered images, respectively. With the
estimated disparity, we then warp chrominance chan-
nels of the input color image into the monochrome im-

age viewpoint to generate an initial colorized image.
The colorization network infers a high quality image
from the estimated disparity map, occlusion map and
the initial colorized image. The occlusion map helps to
remove inaccurately assigned initial seeds of the chromi-

nance channels. Our approach is superior to existing
cross-channel and multi-spectral stereo matching meth-
ods quantitatively and qualitatively. The success comes

from a proper combination of four sub-networks whose
overview and detail are shown in Fig. 2 and Sec. 7, re-
spectively.

4.1 Disparity Estimation

The overall structure of our disparity estimation net-
work is similar to (Mayer et al 2016). The network
has an encoder-decoder structure and has two input

streams for each input image. We connect feature maps
between corresponding layers of encoder and decoder
to preserve both high-level information and fine local
information.

In traditional stereo matching (Hirschmüller and
Scharstein 2009), a cross correlation that performs mul-
tiplicative patch comparisons to account for gain and
radiometric changes. To take the advantage of the cross
correlation, its modifications are used for multi-spectral/
cross-channel stereo matching (Heo et al 2011; Hol-
loway et al 2015). Several variants of the cross cor-
relation are designed to impose high weights for the

image textures with different spectral ranges of wave-
lengths. Particularly, the work in (Holloway et al 2015)
computes matching costs only using gradient patches of
cross-/multi-spectral images because they barely share
photo-consistency in practice.
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We utilize it to compute matching costs between two
learned features (Dosovitskiy et al 2015) as well. The
size of feature maps from the correlation layer is four-
dimensional: for every combination of two 2D positions
we obtain a correlation value, i.e. the scalar product of
the two vectors which contain the values of the cropped
patches, respectively. In practice, we organize the dis-
parity in channels, whose range is a hyper-parameter.

A concatenation of two learned feature maps could
also be considered because it shows better efficiency on
the cost volume-based stereo matching (Kendall et al
2017; Chang and Chen 2018; Im et al 2019b). The con-
catenation has an opportunity to learn an absolute rep-
resentation and carry this through to the cost volume.
However, in this work which directly regresses corre-
spondences like flownet (Dosovitskiy et al 2015), the
cross correlation is more effective than the concate-
nation since the correlation layer explicitly provides
matching capabilities.

In order to optimize this sub-network, we use a

berHu loss (as known as reverse Huber loss) (Owen
2007) as follow:

ED =
1

N

∑
i

B(Di
est, D

i
gt),

s.t. B(x, y) =

{
|x− y| if |x− y| ≤ c
|x−y|−c2

2c otherwise
(1)

where Dest and Dgt are the estimated and ground-truth
disparity maps, respectively. N is the number of pixels

of the image and i denotes a pixel index of the image.
| · | is an absolute operation and c is a variable assigned
as αmaxi |Di

est−Di
gt| with α = 0.2 in (Tosi et al 2019).

4.2 High-quality Color Image Recovery

In (Jeon et al 2016), the Y UV colorspace is used for
color image recovery by compositing one luminance chan-
nel Y of the monochrome image and two chrominance
channels, U and V , of the color image. They directly use
the monochrome input image as the luminance channel
of a recovered color image and reconstruct color infor-
mation of it by combining the chrominance channels of
the color input image according to the estimated dispar-
ity. The recovered color image often suffers from incor-
rect chrominance mapping and color bleeding errors due
to occlusion and an inaccurate disparity map. These

errors are corrected with a modified colorization algo-
rithm (Levin et al 2004) that segments the luminance
channel into super-pixels (Achanta et al 2012) and com-
putes the confidence of initial chrominance mapping.
Additionally, since the colorization (Levin et al 2004)

(a) GT (b) denoised input (c) noisy input

Fig. 3 A comparison of depth maps obtained from denoised
and noisy input stereo image.

is similar to neighborhood propagating properties, it
enjoys its built-in smoothing effect on the color image
recovery. Motivated from it, we separate the color im-
age recovery task as in (Jeon et al 2016).

4.2.1 Denoising

We first remove the noise of each input image using a
denoising sub-network. The sub-network has the same
structure with (Zhang et al 2017a). The network con-

sists of 17 convolutional layers with Batch normaliza-
tion and ReLU activation except for the first and last
layers, and outputs a residual image for noise. The ben-
efit of Batch normalization is that the residual out-

put follows a Gaussian distribution which facilitates the
Gaussian normalization step of batch normalization. In
addition, we note that each convolution layer is ini-

tialized by orthogonal regularization, working well in
suppressing image noise and preserving details.

The sub-network is optimized by minimizing a Eu-
clidean distance between input image and denoised im-
ages as below:

EN =
1

N × CH
∑
ch

∑
i

‖Gi
ch − (Iich −Ri

ch)‖, (2)

where G is a ground-truth image, I is a noisy image and
R is a residual output from the sub-network. ‖·‖ denotes
a L2 norm. ch represents the index of image channels.
CH denotes the number of color channels and is set to

1 if an input is a monochrome image. We note that the
disparity estimation in Sec. 4.1 is performed with only
noisy image pairs because a denoised stereo pair are not
matchable (see Fig. 3).

4.2.2 Occlusion Estimation

Prior to colorization, we estimate occlusion regions that
lead to color mapping errors even for the pixels warped
by accurate disparity values (see Fig. 4(a) and (b)).

There are two types of occlusion estimation using
CNNs. The first one is to estimate occlusion maps and
disparity maps separately in (Li and Yuan 2018). The
work infers occlusion maps from stereo image pairs at
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first, and then computes disparity maps with the stereo
pairs and the estimated occlusion maps. The second
manner shares a common encoder to extract feature
maps from stereo image pairs, and uses separate de-
coders to produce disparity maps and occlusion maps
with their consistency term in a loss function (Zhao
et al 2020).

For this, we design a separate encoder-decoder struc-
ture network. This sub-network takes a difference im-
age between the monochrome image and the decolorized
color image which is warped by the estimated disparity
map as input. In addition, a compressed feature from
the encoder of disparity estimation is utilized to embed
implicit disparity information between them. Similar
with recent cross-/multi-spectral matching (Quan et al
2019), the difference as input aims to extract a feature
map for texture similarities.

The feature map is embedded with a feature map
from the encoder for disparity estimation in Sec. 4.1
before passing through the decoder. This aims to utilize
learned feature maps for parallax between stereo images

as well as texture similarities. We observe that both
feature maps make more reliable predictions.

As a loss function, we use a binary cross-entropy as

below:

EO = − 1

N

∑
i

Oi log(p(Oi)) + (1−Oi) log(1− p(Oi)),

(3)

where O is the binary mask (1 for occluded regions
and 0 for unoccluded regions) and p(·) is the predicted
probability of the occluded regions.

4.2.3 Colorization

Similar to (Jeon et al 2016), our colorization sub-network
ingests images in the Y UV colorspace which is com-
posed of one luminance channel Y in the monochrome
image and two chrominance channels, U and V in the
warped color image through the estimated disparity
map. The warping is performed by differentiable bi-

linear interpolation (Jaderberg et al 2015). We addi-
tionally use the estimated occlusion map by concate-
nating it with the initial colorized image to correct color
bleeding errors to impose a weight for occluded regions
(see Fig. 4(c) and (d)).

The sub-network aims to refine the initial colorized
image by removing bleeding color pixels and by re-
inferring correct chrominance values. Here, the occlu-
sion map is used to impose a weight for occluded re-
gions which potentially cause inaccurate colorization

results. In addition, the sub-network considers the con-
tent of the monochrome image with the chrominance

information during the colorization process. Since the
monochrome image is a reference image, the chromi-
nance acts as initial seeds, similar to edge-aware fil-
ters like Gastal and Oliveira (2011). The occlusion map
stops spreading the chrominance information into un-
reliable regions.

For colorization, we use a U-Net structure (Ron-
neberger et al 2015), which has been shown to work
well for a colorization task (Zhang et al 2017b). Our col-
orization sub-network has 8 convolutional blocks con-
sisting of Conv-Conv-BatchNorm (block 1 to 4) and
Deconv-Conv-Conv-Conv-UpSample (block 5 to 8). All
convolutional layers are followed by ReLU activation
except for the prediction layer. In the encoding layers,
feature maps are progressively halved spatially, while
doubling in the feature dimensions. In the decoding lay-
ers, spatial resolution is recovered, while feature dimen-
sions are halved. Skip connections are added to help the
network recover spatial information similar to the dis-
parity estimation in Section 4.1. Our sub-network for
colorization does not require any user input. In addi-
tion, it does not need to compute additional statistics

because we have enough initial seeds through the color
mapping. Instead of stacking all inputs together, our
sub-network also concatenates the inputs after passing

through each convolution layer.

The sub-network is optimized by minimizing a Eu-
clidean distance between a ground-truth chrominance
C and a recovered chrominance J as below:

EC =
1

2N

∑
k∈{U,V }

∑
i

‖Ci
k − J i

k)‖. (4)

In total, CMSNet uses one loss function which is a
linear combinations of Eq.1, 2, 3 and 4 as below:

E = ED + λ1EN + λ2EO + λ3EC , (5)

where λ1, λ2 and λ3 are hyper-parameters of our loss
function. We empirically set them to 1, 100, 0.1, respec-
tively. CMSNet dose not utilize any pre-trained models
and we will describe the training details in Sec. 4.4.

4.3 Data Augmentation

There is no public RGB-monochrome stereo image dataset.
By contrast, many color stereo image pairs are avail-
able. In this environment, we have to generate RGB-
monochrome image pairs for training CMSNet from
public synthetic stereo datasets Mayer et al (2016). For
this, we augment the synthetic stereo datasets for RGB
and monochrome images separately. This augmentation

is based on the properties of each camera as discussed
in Sec. 3.
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(a) Ground-truth occlusion (b) Colorization w/o occlusion

(c) Estimated occlusion (d) Colorization w/ occlusion

Fig. 4 An example of the effectiveness of the estimated oc-
clusion map in colorization.

(a) Augmented monochrome image from left-side view

(b) Augmented color image from right-side view

Fig. 5 An example of data augmentations. (a) Input color
image, decolorization, random gamma mapping and adding
signal dependent Gaussian noise (left to right). (b) Input color
image , Raw-style image generation, adding signal dependent
Gaussian noise and demosaicing and random tuning of con-
trast, hue and saturation (left to right).

For monochrome images (left-side view), we first de-
colorize them using a conventional RGB to grayscale
conversion. We apply a random gamma mapping [0.6,
0.9] to imitate the light efficiency of monochrome cam-
eras, and then randomly add signal dependent Gaus-
sian noise with a given standard deviation where κ ∈

{0.005, 0.015} represents the noise-free signal intensity
(Achanta et al 2007) (see Fig. 5 (a)).

For color images (right-side view), we consider a
demosaicing process and simulate lower resolution and
less light efficiency than those of monochrome images.
We sample pixels of each color channel on a fixed grid
with stride 2. We then collect the pixels on a rectangle
grid with 2×2 pixels in order to produce a RAW for-
mat which is a grayscale with a BGGR Bayer pattern.
Since the lower resolution of color images than that
of monochrome images is associated with demosaicing,
we reconvert the RAW image to a color image using
a conventional demosaicing (Malvar et al 2004). Be-
fore adding random signal dependent noise with higher
standard deviation of κ ∈ {0.03, 0.05}, we additionally
use color augmentations including saturation [0, 1], con-
trast [0, 2] and hue [-1, 1] in order to simulate different
spectral sensitivities (see Fig. 5 (b)).

We highlight that our generated RGB-Monochrome

stereo dataset achieves a generality of our network, and
the experimental results show the dataset is enough to
train. The synthetic datasets used never suffer from the
loss of image quality. With the lossless images, we con-

vert color images into monochrome images, and down-
sample color images to simulate artifacts by follow-
ing a conventional demosaic process. As demonstrated

in Shin et al (2018), the aggressive and proper data
augmentation scheme has a significant impact on the
generality of CNNs, similar to our CMSNet. We note
that it is a strength of our CMSNet in that it shows

promising performance without any fine-tuning with
real-world images whose construction is infeasible.

4.4 Training Details

In training, we use stereo image pairs with 192×320 res-

olutions, its corresponding ground-truth disparity maps
and occlusion maps from the train split of FlyingTh-
ings3D1 (Mayer et al 2016). We set a disparity range
to [0, 45] pixels. We randomly shuffle the whole dataset
and train our model with about 35M parameters from
scratch for 1M iterations in total without any further
fine-tuning. We use random initialization for all convo-
lution filters. All models were trained end-to-end with
the ADAM optimizer (β1 = 0.9, β2 = 0.999). We use
a batch size of 4 and set a learning rate to 1e−4 for
all iterations. The training is performed with Tensor-
Flow (Abadi et al 2015) on one Nvidia 1080 Ti GPU
and it takes about three days. For inference, CMSNet

1 Downloaded from https://lmb.informatik.

uni-freiburg.de/resources/datasets/

SceneFlowDatasets.en.html

https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
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takes 0.04 seconds per one disparity map and recovered
color image.

5 Experiments

We demonstrate the performance of CMSNet on dispar-
ity estimation and color image recovery. For evaluation,
we compare CMSNet with state-of-the-art methods of
cross-channel/multi-spectral stereo matching and sin-
gle/ multi-image denoising. In addition, ablation stud-
ies indicate that each of these technical contributions
leads to appreciable improvements in disparity accu-
racy and recovered image quality.

5.1 Disparity Estimation

We quantitatively evaluate CMSNet on Flyingthings3D
(test split), Middlebury stereo (Hirschmüller and Scharstein
2009), Monkaa (Mayer et al 2016) and KITTI (Menze
and Geiger 2015). In our evaluation, we randomly select

50 images from each dataset and report common quan-
titative measures of disparity quality for 200 images in
total: root mean square error (RMSE) and bad pixel
ratio (BPR: A percentage of disparity error over 1, 2

and 4 pixels). Since the KITTI dataset provides sparse
depth measurements from a Lidar sensor, we measure
the errors for the valid pixels.

For the Flyingthings3D and the Monkaa datasets,
we generate color-monochrome stereo pairs with the
same manner of Section 4.3. For realistic simulation

using the Middlebury dataset, we take two images cap-
tured under different illuminations to simulate different
spectral sensitivities and add additional noise to simu-
late low-light conditions. To imitate the light-efficiency
difference between color and monochrome cameras, we
use longer exposure images as monochrome input im-
ages and add more noise to color input images as well.

To validate a generality of CMSNet over real-world
data, we use the KITTI dataset which provides two
types of stereo pairs captured with color and monochrome
stereo setup. We take one color and one monochrome
images from these four images. Since the goal of KITTI
stereo evaluation is to demonstrate the generality on
the real-world scenes, we do not add noise and try color

variations.

For evaluation, we compare CMSNet with state-
of-the-art methods of multi-spectral or cross-channel
stereo matching; ANCC (Heo et al 2011), JDMCC (Heo
et al 2013), DASC (Kim et al 2015), CCNG (Holloway
et al 2015) and ITER (Jeon et al 2016), which are
based on hand-craft matching costs. For a fair compar-
ison, we used the original authors’ code and chose the

best performing parameters after parameter sweeps. We
also perform a comparison with an unsupervised multi-
spectral stereo matching network, namely DMC (Zhi
et al 2018). Taking advantage of the unsupervised man-
ner, we additionally report quantitative results from
DMC fine-tuned on train splits of each dataset. The
quantitative comparison is presented in Table 1, whose
examples are shown in Fig. 6. We also report inference
time of ours and the competitive methods in Table 2.

In this experiment, the modified normalized cross
correlation-based methods (Kim et al 2015; Holloway
et al 2015; Heo et al 2011) are vulnerable to a low inten-
sity level and severe noise as demonstrated in (Hirschmüller
and Scharstein 2009). JDMCC (Heo et al 2013) works
relatively well among the competing methods, but it ex-
hibits large quantization errors as shown in Fig. 6 (4th

row). We conjecture that the absence of color informa-
tion occurs the failure of color equalization of JDMCC
and it yields large errors in the results of JDMCC.
ITER also shows relatively good results because its de-

colorization for noisy color images reduces image noise
during iterative matching procedure. However, tree-based
filtering as a post processing sometimes causes depth

quantization artifacts for unmatched pixels.

DMC does not work well in these experiments. DMC
computes a color consistency between an NIR image

(monochrome image here) and a pseudo NIR image
from their spectral conversion network as a loss func-
tion. It is reasonable only if the RGB-NIR cameras

are radiometrically calibrated and their varying radio-
metric setting such as white balancing gains and expo-
sure times are known. In this experiment, we perform
various color augmentations for test splits of Flyingth-

ings3D and Monkaa, which makes DMC difficult to pro-
duce reliable disparity maps. We observe that DMC
produces relatively reasonable results on the KITTI
dataset having consistent scene configurations and ra-
diometric settings.

On the other hand, CMSNet largely outperforms
all the competing methods over all test datasets. Com-
pared to the hand-craft matching methods, the pro-
posed method causes less quantization artifact while
preserving the sharp object boundaries. We observe that
the proposed method with the proper data augmenta-
tion technique improves the performance of correspon-
dence search between the multi-spectral stereo images.
We also can see that our disparity network produces
accurate disparity maps that represent fine details. In
particular, CMSNet can be boosted up by fine-tuning
a specific dataset like the Middlebury dataset2 in this
experiment.

2 We randomly crop the images to augment and generate
occlusion maps by crosschecking a pair of disparity maps.
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Table 1 Comparison results. Disparity estimation: DASC (Kim et al 2015), CCNG (Holloway et al 2015), ANCC (Heo
et al 2011), JDMCC (Heo et al 2013), ITER (Jeon et al 2016), DMC (Zhi et al 2018) and ours including ablation studies. The
‘RGB pair’ is to use color stereo image pairs as inputs, and the ‘feat. concat’ is the learned feature concatenation instead of
cross correlation. The ‘denoise’ is to take color and monochrome images passing through our denoising network as inputs. The
numbers in parentheses indicate the errors in the predicted disparity map before fine-tuning the Middlebury dataset. Best,
Second best.

Method FlyingThings3D Middlebury
RMSE Bad1.0 Bad2.0 Bad4.0 RMSE Bad1.0 Bad2.0 Bad4.0

Hand-craft matching cost
ANCC (Heo et al 2011) 8.7748 0.5270 0.3640 0.2673 5.0382 0.4625 0.3177 0.2177
JDMCC (Heo et al 2013) 7.4159 0.3910 0.2618 0.1894 5.1111 0.4175 0.2900 0.1962
DASC (Kim et al 2015) 7.7259 0.5485 0.3767 0.2753 7.0185 0.7290 0.5930 0.4833
CCNG (Holloway et al 2015) 8.4084 0.8453 0.7475 0.5615 8.4977 0.8490 0.7627 0.6045
ITER (Jeon et al 2016) 6.4479 0.3784 0.1572 0.1136 5.6211 0.3027 0.2397 0.1451

Learning-based
DMC (Zhi et al 2018) 7.8583 0.7924 0.6259 0.3864 10.0653 0.8593 0.7548 0.5907
DMC + ft (Zhi et al 2018) - - - - 9.6338 0.8284 0.7063 0.5392
CMSNet (RGB pair) 4.6696 0.4576 0.2811 0.1497 4.3350 (8.0860) 0.6888 (0.7320) 0.4714 (0.5674) 0.2409 (0.3846)
CMSNet (feat. concat) 3.9881 0.3450 0.1913 0.0964 3.5442 (5.9853) 0.2306 (0.2836) 0.1547 (0.1960) 0.0820 (0.1630)
CMSNet (denoise) 4.2396 0.3476 0.1954 0.0999 3.7014 (5.5443) 0.3260 (0.3774) 0.1862 (0.2812) 0.0992 (0.1625)
CMSNet 3.7917 0.2949 0.1656 0.0857 3.4646 (5.7505) 0.2139 (0.2710) 0.1448 (0.1740) 0.0790 (0.1011)

Method Monkaa KITTI
RMSE Bad1.0 Bad2.0 Bad4.0 RMSE Bad1.0 Bad2.0 Bad4.0

Hand-craft matching cost
ANCC (Heo et al 2011) 9.3956 0.5921 0.4005 0.2981 4.7791 0.3518 0.1620 0.0963
JDMCC (Heo et al 2013) 7.9282 0.5012 0.3192 0.2150 4.6405 0.2474 0.1285 0.0822
DASC (Kim et al 2015) 8.0148 0.5959 0.4097 0.2864 5.7050 0.3270 0.1965 0.1349
CCNG (Holloway et al 2015) 9.0141 0.7288 0.6166 0.4678 3.7378 0.6925 0.4352 0.1525
ITER (Jeon et al 2016) 7.1502 0.5050 0.3968 0.3004 3.8543 0.4023 0.3162 0.2248

Learning-based
DMC (Zhi et al 2018) 9.3281 0.8740 0.7880 0.6283 7.7020 0.8425 0.7256 0.5273
DMC + ft (Zhi et al 2018) 8.6539 0.7763 0.6645 0.5248 5.9794 0.6302 0.5089 0.3178
CMSNet (RGB pair) 10.8936 0.8684 0.7709 0.6125 2.5390 0.2740 0.1548 0.0701
CMSNet (feat. concat) 5.4372 0.4634 0.2951 0.1828 3.0636 0.3002 0.1529 0.1002
CMSNet (denoise) 6.0270 0.5093 0.3472 0.2208 3.0736 0.3007 0.1738 0.1106
CMSNet 4.7084 0.3830 0.2540 0.1578 2.4942 0.2218 0.1193 0.0772

Table 2 Computational time in disparity estimation. Note
that we utilize the official implementation codes that are pro-
vided by original authors.

Method Inference time [sec]
Hand-craft matching cost
ANCC (Heo et al 2011) 54.70
JDMCC (Heo et al 2013) 154.66
DASC (Kim et al 2015) 8.36
CCNG (Holloway et al 2015) 8.70
ITER (Jeon et al 2016) 120.01
Learning-based
DMC (Zhi et al 2018) 0.01
CMSNet (Ours) 0.04

We also conduct an extensive ablation study to ex-
amine the effects of different components in CMSNet.
We first demonstrate the benefit of the color-monochrome
image pair in presence of severe noise. We train our dis-
parity network with noisy color image pairs. To do this,
we change the number of input channels in the input
monochrome image from one to three, and then re-train
our network. This network fails to produce reliable re-
sults because severe noise causes inaccurate matches
between them. Even though the network quantitatively
shows good performance on the KITTI dataset in Ta-
ble 1, the estimated disparity map in Fig. 6 (9th row)

is blurry. The blurry disparity may come from relatively
lower resolution of color images than that of monochrome
images.

We compare two feature representation methods for
color-monochrome pairs: correlation and concatenation.
We change the cross-correlation module to a simple con-

catenation along with a channel dimension, and then

re-train our network. In Table 1, we observe that the
cross correlation provides better performance than the
feature concatenation.

For another study, we slightly modify the structure

of CMSNet. In this modified version, we first pass color
and monochrome images through our denoising network
to suppress noise, then feed the denoised images into the

other subnetworks. However, its performance is worse
than CMSNet because texture inconsistency between
input images is increased. The basic concept of single
image denoising methods (Dabov et al 2007) is to av-

erage the similar local patches, which results in edge
smoothing. Since the size of the local patches is deter-
mined according to the noise levels Dabov et al (2007),
images with high noise levels are severely smoothed.
The CNN-based denoising methods also infer latent
patches with local convolution filters. In real-world sce-
narios, it is infeasible for denoised images to show sharp
edges and textures as same as their ground-truth im-
ages. The local convolution operations aim to smooth
noisy patches to minimize RMSE over their ground-
truth patches, and cause texture variations of them
which make computations of matching costs difficult.
As demonstrated in Hirschmüller and Scharstein (2009),

Gaussian filtering, which makes noisy images blurry
with the same blur kernels, is helpful for stereo match-
ing. For better stereo matching with noisy image pairs,
a novel stereo matching should be devised by consider-
ing matchability between the pairs as well as RMSE.
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Fig. 6 Comparison of disparity map results on FlyingThings3D, Middlebury, Monkaa and KITTI. We note that the predicted
disparity maps from CMSNet including ablation studies on Middlebury are results from the fine-tuned networks.
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Table 3 Comparison results. High-quality image recovery: BM3D (Dabov et al 2007), non-local means (Buades et al
2005), DnCNN (Zhang et al 2017a), WAVG (Im et al 2019a) and ITER (Jeon et al 2016) and ours including ablation studies.
The ’init. mapping’ is a recovered image without the colorization process of CMSNet, and the ’w/o occlusion’ is a output of
the colorization network without an occlusion map.

Method FlyingThings3D Middlebury Monkaa
PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

BM3D (Dabov et al 2007) 26.0982 0.9421 30.9789 0.8288 27.3202 0.9202
Non-local (Buades et al 2005) 24.1725 0.9070 30.9424 0.8542 27.0228 0.9605
DnCNN (Zhang et al 2017a) 26.6576 0.9316 31.0343 0.8629 28.1681 0.9533
WAVG (Im et al 2019a) 28.2327 0.9577 30.9371 0.7757 29.5694 0.9729
ITER (Jeon et al 2016) 27.2488 0.9423 27.5619 0.8197 26.6232 0.9343
CMSNet (init. mapping) 27.4683 0.9377 29.1909 0.8579 29.0098 0.9512
CMSNet (w/o occlusion) 28.4535 0.9508 30.7879 0.8748 29.4817 0.9562
CMSNet 28.5782 0.9598 30.9681 0.8749 29.7823 0.9649

5.2 High-quality Color Image Recovery

We also evaluate the effectiveness of our high-quality
image recovery using the FlyingThings3D, Middlebury
and Monkaa datasets. For quantitative evaluation, we
randomly select 50 images from each dataset and com-
pare PSNR and SSIM (Wang et al 2004) with single
image denoising and multi-image denoising methods:
BM3D (Dabov et al 2007), non-local means (Buades

et al 2005), DnCNN (Zhang et al 2017a), WAVG (Im
et al 2019a) and ITER (Jeon et al 2016).

For the hyper-parameters of BM3D and non-local

means, we utilize noise level estimations in (Liu et al
2013) and (Immerkaer 1996), respectively. DnCNN is
a CNN-based single image denoising method. WAVG
takes one reference image and multiple target images

with their correspondences as inputs. ITER uses a color-
monochrome image pair and transfers the chrominance
information of the color image into the monochrome im-

age with its corresponding disparity map. We note that
ground-truth disparity maps are used for the optimal
performances of WAVG and ITER in this experiment.
The quantitative comparison is presented in Table 3,

whose examples are shown in Fig. 7.

In the results, BM3D and non-local means show
relatively higher PSNR and SSIM for the Middlebury
dataset than those for Flyingthings3D and Monkaa.
This is because the performances of BM3D and non-
local means mainly depend on their hyper-parameters
for noise levels. The noise level estimations (Immerkaer
1996; Liu et al 2013) compute the noise standard devi-
ation from homogeneous patches of images. We observe
that the noise level estimations sometimes fail to calcu-
late optimal parameters in Flyingthings3D and Monkaa
because they have highly textured images. DnCNN shows
consistent performances on all datasets, but color im-

ages with high noise level lead to lower performances
than that with color-monochrome image pairs. We can
see that two images are insufficient for WAVG to achieve
reasonable performance. ITER suffers from color bleed-
ing error because its colorization with a chrominance

consistency weight does not work in regions where par-
allax is significant.

We also conduct an ablation study for the color im-
age recovery in CMSNet. We first evaluate the initial
color mapping with an estimated disparity map by di-
rectly measuring PSNR and SSIM. As shown in Fig. 7
(9th row), the network that does not consider the oc-
clusion map provokes the color breeding error in out-
of-plane regions. In contrast, the result of the final CM-

SNet in Fig. 7 (the last row) shows that the occlusion
term effectively handles the artifact. In this respect,
each component of CMSNet contributes to the recov-
ery of high-quality color images. Different from con-

ventional cascade frameworks such as BM3D, non-local
means and ITER, CMSNet does not require any hyper-
parameter tuning in the test phase. In addition, the

recovered color images from CMSNet look perceptually
convincing, thanks to the benefit of monochrome im-
ages.

5.3 Real-world results

Although we demonstrate the generality of CMSNet us-
ing the KITTI dataset in Sec. 5.1, the provided datasets
were only captured under daylight conditions. For the
further investigation on challenging conditions, we cap-
tured indoor and outdoor scenes with our own color-
monochrome stereo camera in low-light condition and
evaluated CMSNet on the real-world datasets.

We implemented our prototype system using two
PointGrey Flea3 cameras, one color and one monochrome
cameras, whose baseline is 5cm and the maximum dis-
parity is about 80 pixels. The stereo system was pre-
calibrated and images from the cameras were rectified
using the MATLAB camera calibration toolbox3. A res-
olution of the captured images is 1200×2500 pixels, and
we resize it into 567×960 pixels in the test phase. Since
CMSNet consists of fully convolutional layers, images

3 http://www.vision.caltech.edu/bouguetj/calib_doc/

index.html

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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(a) Input - mono (b) Input - Color (c) Enlarged part of (a) and (d) (d) Recovered image (e) Disparity map

Fig. 8 Disparity estimation and recovered color image results on indoor/outdoor scenes captured from our prototype system.

with higher resolutions than that used in the training

phase are available.

Fig. 8 shows the results of the real-world data which

are captured at night in low-light conditions. CMSNet
achieves accurate disparity maps and produces high-
quality color images. Note that CMSNet reconstructs
both depth discontinuities and fine structure such as

the stone statue and the plant in the 3rd row, and the
golf club in the 4th row of Fig. 8. Particularly, the auto-
exposure of each camera does not help to recover some

poorly exposed areas due to lack of light as shown in
1st and 2nd row of Fig. 8. On the other hand, the RGB-
monochrome fusion with the estimated disparity map
results in brighter images than the input color images.
The use of monochrome image as a luminance channel
for the recovered image enables to reduce image noise
and shows higher resolution. As shown in the 4th row
of Fig. 8, the text are better readable after CMSNet’s
reasonable process.

Finally, we evaluate CMSNet on NIR-RGB stereo
images4 (Zhi et al 2018) as shown in Fig. 9 to demon-
strate the versatility of the proposed method. The res-
olution of the dataset is 429×582 pixels and the maxi-
mum disparity is less than 20 pixels. Since the dataset
does not provide ground-truth disparity maps, CMSNet
trained on Flyingthings3D is just applied. As shown

4 Downloaded from https://github.com/tiancheng-zhi/

cs-stereo

RGB NIR Estimated disparity

Fig. 9 Disparity estimation results on NIR-RGB image pairs.

in Fig. 9, CMSNet shows reliable disparity estimation
result without any finetuning process. Thanks to our
aggressive data augmentation, our network trained on
Flyingthings3D alone is enough to apply to different
spectral images.

6 Conclusion

We have proposed an end-to-end convolutional neural
network, namely CMSNet, for high-quality disparity es-
timation and color image acquisition in low-light condi-

tions. We have achieved this by utilizing a fundamental
trade-off between color and monochrome cameras. We

https://github.com/tiancheng-zhi/cs-stereo
https://github.com/tiancheng-zhi/cs-stereo
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performed extensive evaluations and validated the ef-
fectiveness of the proposed network quantitatively and
qualitatively. We expect that the proposed framework
can be popular as a robust stereo system for a mobile
phone and a surveillance system.

In this study, we found some challenges that we
should overcome, which are considered as our future
work. First, CMSNet has a large number of model pa-
rameters, which is not suitable for mobile phone so-
lutions. For a practical utility, a smaller network can
be made possible by reducing redundant networks and
by drilling down to architectural details. Second, the
performance of CMSNet is not guaranteed for datasets
with refractive media, which is still considered as a fun-
damental issue of stereo matching. We can introduce a
material awareness term in our loss function like (Zhi
et al 2018) to handle this problem.
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7 Appendix: Details of CMSNet architecture
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