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Figure 1. Our model simultaneously tracks, finds body joints, and segments high-quality mask for all human instances in a video. Compared
to off-the-shelf online video instance segmentation models, our method generates masks of finer granularity (first row). Also, jointly
tracking pose and mask allows us to apply multiple visual effects because segmentation masks help layer separation while joint information
supports motion tracking (second row).

Abstract

In real- world applications for video editing, humans are
arguably the most important objects. When editing videos
of humans, the efficient tracking of fine- grained masks and
body joints is the fundamental requirement. In this paper,
we propose a simple and efficient system for jointly tracking
pose and segmenting high- quality masks for all humans in
the video. We design a pipeline that globally tracks pose
and locally segments fine- grained masks. Specifically, Cen-
terTrack is first employed to track human poses by view-
ing the whole scene, and then the proposed local segmen-
tation network leverages the pose information as a pow-
erful query to carry out high- quality segmentation. Fur-
thermore, we adopt a highly light- weight MLP- Mixer layer
within the segmentation network that can efficiently propa-
gate the query pose throughout the region of interest with
minimal overhead. For the evaluation, we collect a new
benchmark called KineMask which includes various ap-
pearances and actions. The experimental results demon-
strate that our method has superior fine- grained segmenta-
tion performance. Moreover, it runs at 33 fps, achieving a
great balance of speed and accuracy compared to the pre-
vailing online Video Instance Segmentation methods.

∗Work done during an internship at Adobe Research.

1. Introduction

With explosive demand for video contents and advances
in computer vision technology, deep learning-based video
editing techniques have been successfully used in profes-
sional desktop programs and mobile applications for non-
professional users. For example, algorithms for multi-
person pose tracking [1, 20] can be applied to a variety of
applications where human joint information is necessary
such as animation and movie editing. In addition, video ob-
ject segmentation [29] allows users to obtain sophisticated
masks for the objects guided by an initial mask or scrib-
bles, enabling various masking-based visual effects such as
composition.

Recently, the task of video instance segmentation
(VIS) [44] has been introduced, which predicts masks of
objects in videos without user-provided guidance. How-
ever, we argue that VIS algorithms are usually not opti-
mal for video editing applications for following reasons.
First, most VIS methods are optimized for YouTube-VIS
benchmark [44] that is composed of categories that are less
likely to be used by editors. In addition, the metric used
for the evaluation (AP) makes existing approaches to value
detection and tracking over segmentation qualities. As a re-
sult, the VIS task becomes impractical in the perspective
of editors, whom frequently demand human masks of fine-
granularity with high efficiency.



When applying visual effects on humans, the pose in-
formation is highly required in addition to the mask. Fine
grained segmentation masks and human-specific articular
information are complementary to each other. As shown
in Fig. 1, segmentation masks help layer separation while
joint information supports local patch tracking and those in-
formation are the basic needs for the end-users. While there
exists a notable number of works that tackle each problem
separately, jointly tracking poses and segmenting masks for
human instances has not been thoroughly addressed in the
literature.

In this paper, we propose a simple and efficient on-
line video human instance segmentation and pose tracking
pipeline which is applicable to daily videos. As shown in
the illustration in Fig. 2, we take a globally track pose then
locally segment mask strategy. Our intuition is that light-
weight but accurate segmentation module can be designed
using human-specific skeleton information as a powerful
query. Specifically, for Global Pose Tracker, we adopt Cen-
terTrack [47] which was initially proposed for multi-object
tracking but also demonstrates excellent flexibility in hu-
man pose estimation. CenterTrack efficiently detects and
tracks all the human instances in the video. To have a large
receptive field that cover the whole scene and make the in-
ference of tracker faster, we down-scale the input from the
original resolution.

Next, segmentation is performed locally for each de-
tected human instance by cropping the region of interests
(ROIs) from the original input. We maintain high resolu-
tions for each ROIs to keep fine-details. Each cropped ROIs
are concatenated with their corresponding joint heatmap,
then passed to the segmentation module. Note that the
heatmap contains explicit pose information about a person.
Therefore, our goal is to design a highly efficient segmenta-
tion network that effectively understands the context of the
ROI by utilizing the heatmap and mostly dedicate to focus
on the details. From experiments, shallow networks with
typical CNN blocks (e.g. ResNet-18) inherently show limi-
tations encoding sparsely distributed heatmaps due to small
receptive fields. In order to improve the mask quality, an
off-the-shelf solution would be to stack more CNN blocks
or use extra modules such as ASPP [11, 12] to enlarge the
receptive field. However, adopting such architectures in-
evitably leads to more computations, resulting in low effi-
ciency.

To overcome the issue, we adopt recently proposed
MLP-Mixer (Mixer) [33] as an efficient global information
gatherer. Since its architecture is based entirely on multi-
layer perceptrons (MLPs), the additional overhead is ex-
tremely low while taking the advantage of the global re-
ceptive field within ROI. We insert a single Mixer layer to
the encoder of our segmentation module with the motiva-
tion of effectively propagating the context which is implic-

itly encoded in the heatmaps to the overall feature at once.
Finally, our model remains highly efficient while preserv-
ing fine details and segmenting masks of high quality. It is
noteworthy that this is the first study to use Mixer in com-
bination with CNN to increase the efficiency of the dense
predication task.

The current VIS dataset is not human-centric and the
ground truth of the validation dataset is not provided with
only full class score available. Therefore, we introduce a
new benchmark called KineMask for the evaluation which
focuses on human instances with diverse appearances and
motions. To demonstrate the effectiveness of our method,
we also propose a new metric that measures the accuracy
of boundary region along the temporal axis. The proposed
approach is very simple and runs at 33 FPS on a single RTX
2080Ti GPU, while achieving strong results.

Our main contributions are summarized as follows:

• We tackle the problem of jointly tracking pose and seg-
menting masks for all humans in a video for the first
time. This problem has been overlooked in the com-
puter vision community.

• To design an efficient architecture, we propose a
pipeline which globally tracks pose then locally seg-
ments mask, and exploit human pose information as a
strong query to segment the mask.

• To address the small receptive field issue of the shallow
network, we adopt Mixer layer to efficiently aggregate
local features.

• We introduce a human-centric video instance segmen-
tation benchmark and the metric for measuring the ac-
curacy of boundary regions in a video.

2. Related Work
2.1. Video Instance Segmentation

VIS aims to simultaneously predict categories, segmen-
tation masks, and identities of all instances in a video. Due
to the complexity of the problem, prevailing approaches
follow a track-by-detect paradigm that associates instances
throughout a video after performing frame-level instance
segmentation [9, 25, 44, 45]. On the other hand, several
methods exploit clip-level information and demonstrate a
robustness on occlusion or motion blur [2, 5, 19, 39].

Online methods. MaskTrack R-CNN [44] designs addi-
tional tracking branch on the strong two-stage instance seg-
mentation baseline, Mask R-CNN [16]. They assign iden-
tities by computing the criterion which includes the pair-
wise cosine similarity of visual feature obtained from the
tracking branch and extra traditional matching logics (e.g.,



bounding box IoUs and class id). On the other hand,
SipMask [9] and SGNet [25] extend single-stage detector
YOLACT [7] and FCOS [32] respectively. SipMask pro-
poses a light-weight spatial preservation module that pre-
serves the spatial information within a bounding box and
generates separate set of spatial coefficients for each bound-
ing box sub-region, enabling improved delineation of spa-
tially adjacent objects. SGNet builds additional mask head
and tracking head on FCOS detector. Thanks to the fully
convolutional nature of FCOS, their mask prediction dy-
namically performs spatial attention on each sub-region of
instance that leads to a fine mask quality than RoI based
methods [8, 16]. While aforementioned methods follow
the top-down approach, STEm-Seg [2] takes a clip input
and considers a video as 3D spatio-temporal volumes and
learns to segment instances in videos in a bottom-up fashion
by leveraging spatio-temporal embeddings. CrossVIS [45]
correlates feature spaces of different frames by applying dy-
namically generated filters to different frames.

Offline methods. Given a short video clip, MaskProp [5]
propagates instance-specific features in the center frame ob-
tained from Mask R-CNN [16] to its neighboring frames. It
alleviates challenging problems such as occlusion and mo-
tion blur by utilizing clips in a video as windows and per-
forming clip-level matching. VisTR [39] extends a trans-
former based detector DETR [10] to the VIS task. By taking
the entire video as input and processing it at once, VisTR
solves the VIS from a new perspective of similarity learn-
ing.

2.2. Multi-Object Tracking and Segmentation

Multi-Object Tracking and Segmentation (MOTS) ex-
tends the popular task of multi-object tracking task (MOT)
to instance segmentation. Similar to MaskTrack R-
CNN, [35] suggests a baseline named Track R-CNN
which applies extra tracking branch built upon Mask R-
CNN. PointTrack [43] generates a new tracking-by-points
paradigm where discriminative instance embeddings are
learned from randomly selected points rather than images.
TraDes [40] presents an online joint detection tracking
methods based on CenterNet [48] and infers object as an
offset by a cost volume. MOTS is composed of videos with
numerous pedestrians, thus its target applications are au-
tonomous driving, video surveillance, and robotics. In this
paper, however, we do not directly aim for such scenarios.

2.3. Multi-Person Pose Tracking

Understanding human objects has long been an impor-
tant issue in the field of computer vision, as it is widely
applied to many fields such as human interactions, action
recognition, video surveillance, and sports video analysis.
With the emergence of large-scale benchmark datasets [1,

20], numerous approaches have addressed the problem of
articulated multi-person body joint tracking in monocular
video, and made significant progress [15, 21, 30, 31, 37,
41, 42]. Despite of recent advances in human pose track-
ing, human-specific instance segmentation in videos has not
been thoroughly addressed in the literature.

2.4. Global Receptive Field Models

From the nature of convolutional filters, attending only
local information, the computer vision community have
been studying the effects of receptive fields. With the emer-
gence and massive studies on deep learning, it is proven
effective to gradually increase the receptive field by stack-
ing multiple convolutional layers, and employ multiple fea-
tures of different receptive fields as SIFT [27]. In particular,
ASPP [12] module dramatically increases the receptive field
by associating atrous convolutions and global average pool,
and adopting the module leads to improvement of perfor-
mance on various vision tasks.

As an alternative to ASPP, obtaining the global receptive
field [34, 38] using attention [4] based methods is getting
spotlighted. Taking the global information into account,
an use of the methods leads to a great accuracy. How-
ever, the attentional approaches suffer from quadratic in-
crease of computation with respect to the number of input.
Therefore, many researchers are focusing on diminishing
the overhead while remaining powerful, i.e., decompsing
the attention [6, 36].

Recently, Mixer [33] have shown that the attention is in-
deed not the necessary for the global receptive field. The
simplicity of Mixer highly reduces the overall computation,
thus highly efficient. Our model utilizes a Mixer layer for
understanding semantic information in cropped patches of
a high resolution. The joint heatmap of a person gives a
strong clue to the pose of the targeted person. Without
heavy computations derived from attentional methods, the
Mixer layer effectively encodes the pose information with
its global receptive field.

3. Method

We propose a globally track pose then locally segment
mask strategy for the final goal of designing an efficient
system that simultaneously predicts track IDs and gener-
ates masks with fine granularity for all humans over the en-
tire video. Our intuition is that human-specific skeleton in-
formation can be a powerful query for finding foreground
masks rather than bounding boxes, thus allowing us to de-
vise a light-weighted segmentation model while generating
masks of high accuracy. The overview of our method is
shown in Fig. 2.
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Figure 2. Overview of our framework. Our framework consists of two modules: Pglobal and Slocal. Given two consecutive frames, Pglobal

globally tracks human body joints for all humans in the current frame. Then, Slocal takes cropped RGB images with additional joint agnostic
heatmap and results fine grained segmentation masks.

3.1. Global Pose Tracker

Our method is built on the CenterTrack [47] as a tracker
with an additional pose estimation head introduced in [48].
At time t, given the current frame It and the prior frame
It−1 with an instance-agnostic centerness heatmap Ct−1

which represents tracked objects in the previous frame,
CenterTrack predicts the bounding boxes, joint coordinates,
and track ids for every human in the current frame.

{B̂i
t, Ĵ

i
t , T̂

i
t }

Nt
i=1 = Pglobal(It, It−1, Ct−1), (1)

where B̂i
t is the bounding box, Ĵ i

t is the k 2D human joint
locations (k is 17 in COCO [24]), and T̂ i

t is the track id of
the ith object. Nt is the number of detected instances in the
current frame. To have a large receptive field that cover the
whole scene and make the inference of tracker faster, the
tracker network takes down-sampled frames (512 × 512).
Note that our method possesses good modularity (not de-
pendent on CenterTrack), thus Global Pose Tracker can be
replaced by any other pose tracking architecture depending
on the purpose.

3.2. Local Segmenter

To increase efficiency of the system, relatively less
detail-critical elements are processed globally, and segmen-
tation masks that require pixel-level details are concentrated
and processed locally. The goal of Local Segmenter Slocal is
that finding fine grained masks for all humans in the scene
at time t.

Local region cropping. Prevailing off-the-shelf two-
stage detectors suffer from low segmentation quality driven
from the coarse resolution of 28× 28 [16]. In order to pre-
serve fine details and bring high quality, we take a cropped
region of a high resolution from the original RGB frame
as an input to the Local Segmenter. Our Local Segmenter
focuses on the specific sub-region, generating much fine-
grained masks than previous two-stage detectors. We take
predicted bounding boxes B̂t from Pglobal and expand it by
1.5 times to relax the tight bounding boxes, and up-sample
the cropped region to 512× 512 as input to the network.

Joint heatmap generation. We exploit body joint coor-
dinates from Pglobal as a strong query to generate human
instance masks. The coordinates of predicted joint points
are re-adjusted for the corresponding box area. After that,
we create a single joint-agnostic heatmap with activations
in the regions of the points so that the joints information for
the target instance are given as a guiding signal to the input
of the local segmentation module. We center a 2D Gaus-
sian around each of the points, in order to create a single
heatmap. The heatmap is concatenated with the RGB chan-
nels of the cropped input image, to form a 4-channel input
for the local segmentation module. Then, the final results at
time t frame are computed as follows:

{M̂i
t}

Nt
i=1 = Slocal({B̂i

t(It)⊕Gi
t}

Nt
i=1), (2)

where M̂ is predicted masks, G is joint heatmap, and ⊕
denotes matrix concatenation.
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Figure 3. Detailed architecture of Local Segmenter.

Mixer layer. Despite the heatmap with explicit joint loca-
tion provides stronger foreground information than bound-
ing boxes, a way to effectively transfer it to the network
is needed because each point is located sparsely. A natu-
ral approach will be using a deep encoder-decoder struc-
ture with large receptive fields such as ResNet-50 [17] with
ASPP [11]. However, adopting such an architecture in-
evitably consumes expensive computations, which is less
efficient.

To retain large receptive fields while maintaining
lightweight networks, we leverage recently introduced
Mixer [33]. Mixer is a simple architecture which is entirely
composed of MLPs and attains competitive result on im-
age classification task as convolutions or self-attention. As
the name indicates, the core idea of Mixer is that repeatedly
mixing the features across either spatial locations or feature
channels allows global communication.

Based on our empirical observation that shallow net-
works struggle to associate sparsely located joint informa-

tion, we employ a single Mixer layer after several CNN
blocks propagates localized visual features. Therefore, our
network enjoys both global association of sparsely anno-
tated joint heat-points and the rich localization information
of foreground objects while maintaining efficiency.

Specifically, we insert single Mixer layer on Res3 fea-
tures of H ′W ′ (1/8 to the original resolution) and the out-
put feature Y is computed as follows:

U∗,i = F∗,i +W2σ(W1LN(F)∗,i), for i = 1...c,

Yj,∗ = Uj,∗ +W4σ(W3LN(U)j,∗), for j = 1...s,
(3)

where F is Res3 features, c is hidden dimension, and
s = H ′W ′/p2 is the number of patches. Here LN indi-
cates Layer Normalization [3] and σ is an activate function
(GELUs [18]). We use c = 128 and p = 1. It is notewor-
thy that this is the first study to use Mixer in combination
with CNN to increase the efficiency of the dense predication
task.

Architecture. Fig. 3 illustrates details of our local seg-
mentation network. We adopt encoder-decoder structure
with skip-connections. For encoder network, we use Res2,
Res3, Res4 feature of ResNet-18. And single Mixer layer
aggregates global information adopting Res3 feature. De-
coder network consists of conventional residual blocks to
refine the final mask. The overall loss for the Local Seg-
menter is written as:

L = Lbce + Ldice, (4)

where Lbce is Binary cross entropy loss and Ldice is Dice
loss [28].

4. Training details
Global Pose Tracker. We adopt CenterTrack with pose
estimation head and DLA34 [46] is used as a backbone. The
module is trained using COCO Person dataset [24] and op-
timized with AdamW [26] with learning rate 1e-4.

Local Segmenter. Whereas to inference where only pre-
dicted bounding boxes are used for the sub-regions, we im-
prove the robustness of our model and stabilize training
by alternately assigning the sub-regions with ground truth
boxes B∗ and predicted bounding boxes B̂. Specifically,
the assignment is decided by intersecting areas between B∗

and B̂. Given M ground truths and N box predictions, the
matching score O ∈ [0, 1]M×N is calculated as follows:

O(m,n) =
Area(B∗

m

⋂
B̂n)

Area(B∗
m)

, (5)

where Area denotes the area of the given box and
⋂

results
an intersecting box of the given box pair. Then, we pair
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Figure 4. Examples of KineMask benchmark.

up each predicted box with a ground truth box as σ̂(n) =
argmaxm O(m,n). The assignments of the sub-regions r
are finalized as follows:

ri =

{
B̂i if O(σ̂(i), i) ≥ τ

B∗
σ̂(i) if O(σ̂(i), i) < τ

, (6)

which alternates between a predicted box and a ground truth
box by the threshold τ . If the intersecting area of a predicted
box is above τ , the predicted box is assigned as it covers
the majority of the corresponding ground truth box. On the
other hand, if the intersecting area is below τ , it is likely that
the predicted box cannot sufficiently cover the mask within
the ground truth box, thus the ground truth box is taken.
The joint points are also assigned using the same logic as
Eq. 6. In this paper, we use τ = 0.5 after assigning optimal
matching by Hungarian algorithm [23].

Local Segmenter is also trained using COCO Person
dataset [24] and optimized with SAM [14] with learning
rate 1e-4. We apply dropout to Mixer layer with probability
0.1.

5. Experiments
5.1. KineMask Benchmark

Currently available dataset for VIS is YouTube-VIS [44]
and it contains 2,883 and 3,859 high-resolution YouTube
videos for 2019 and 2021, respectively. Although it covers
40 categories including person, the ground truth of valida-
tion dataset is not available and only full class evaluation
score is provided by the evaluation server, thus we cannot
conduct experiments on only person class.

To this end, we collect a benchmark called KineMask
for human video instance segmentation which consists of
YouTube videos filmed with a variety of camera devices.

videos frames instances action classes resolution

500 19,154 720 79 720×1280

Table 1. Statistics of KineMask benchmark.

Data source. Kinetics dataset [22] is originally intro-
duced for human action recognition and popularly used for
training neural network architectures for understanding hu-
man behavior. For the source of our evaluation dataset, we
adopt Kinetics-400; a large-scale video dataset, covering a
diverse range of human actions.

Statistics. As summarized in the Table 1, KineMask con-
sists of 500 high-resolution videos and has a resolution of
720×1280. The fps of video is generally 30 and we anno-
tate all the masks at 6 fps. Also, the average video length
is about 6 seconds. As our benchmark is collected from Ki-
netics, it includes 79 action classes, thus represents diverse
appearance of objects and large range of motions. Fig. 4
illustrates some examples of KineMask benchmark.

5.2. Evaluation metrics.

Temporal Mask IoU. We follow the standard evaluation
metric of VIS, proposed in [44]. The metric is based on the
average precision (AP) and average recall (AR) which are
standard evaluation metrics in image instance segmentation,
and is extended to the temporal mask sequence. Given two
mask sequences G and P , TMIoU at time t is formulated as
follows:

TMIoU(G,P ) =

∑T
t=1 |Gt ∩ Pt|∑T
t=1 |Gt ∪ Pt|

(7)



Figure 5. Visualization results. The mask color indicates unique instances.

2*Method Training dataset Prediction 2*FPS Temporal Mask AP Temporal Boundary AP
COCO YTVIS Mask Keypoint AP AP85 AP90 AP95 AP AP50 AP75

MaskTrack R-CNN [44]† ✓ ✓ ✓ 25.30 71.4 71.1 34.9 1.6 23.6 76.3 3.1
MaskTrack R-CNN [44]∗ ✓ ✓ 27.33 80.3 85.0 54.7 0.5 30.1 86.9 6.8
SipMask [9]† ✓ ✓ ✓ 37.06 79.3 79.8 56.6 10.6 42.1 87.6 34.5
SipMask [9]∗ ✓ ✓ 38.65 81.4 83.7 64.2 10.8 40.9 89.8 27.2

Ours ✓ ✓ ✓ 33.59 84.2 88.0 76.3 22.3 45.9 91.5 42.8

† reproduced using provided checkpoint
∗ retrained on COCO person class

Table 2. Comparison of our approach with the online VIS methods.

Temporal Boundary IoU. To evaluate both spatial-
temporal consistency and mask quality of boundary region
of predicted and ground truth masks, we propose new met-
ric named Temporal Boundary IoU (TBIoU). Similar to
YouTube-VIS metric, we extend image based Boundary
IoU metric [13] to temporal axis. TBIoU is formulated as
follows:

TBIoU(G,P ) =

∑T
t=1

∣∣(Gd
t ∩Gt) ∩ (P d

t ∩ Pt)
∣∣∑T

t=1

∣∣(Gd
t ∩Gt) ∪ (P d

t ∩ Pt)
∣∣ , (8)

where boundary regions Gd
t and P d

t are the sets of all pixels
within d pixels distance at time t from the ground truth and
prediction contours respectively. The dilation is computed
by dilation ratio×image diagonal. In this paper, we use
0.01 as ratio to calculate dilation.

5.3. Comparison with online VIS models

In this section, we compare proposed method against
two online VIS models, MaskTrack R-CNN [44] and Sip-
Mask [9] in Table 2. The comparison is measured on
the same machine, using a single RTX 2080Ti GPU. We
used the official codes and checkpoints provided by the au-
thors for the measurements. Since their original models are
trained on 40 categories, we also provide results of mod-
els trained on COCO Person dataset. And we applied same
schedule as the original repository.

For the temporal mask AP (TMIoU-measure), our
method achieves 84.2 AP which outperforms all other pub-
lished online VIS methods. More notably, for the temporal
boundary AP (TBIoU-measure), our method achieves 45.9
AP which outperforms both MaskTrack R-CNN and Sip-
Mask with the stronger backbone ResNet-50. Moreover, the
result of TBIoU-measure proves that our model has superior



Input Editing example

Figure 6. Application example of proposed method. As our method successfully generates both (1) segmentation masks and (2) human
body joints, two different types of video editing can be applied simultaneously through entire video: (1) applying background effect for
each person, and (2) the effect can be located specific body parts of the corresponding instance through multiple frames.

boundary accuracy compared to prevailing VIS approaches.
Our model is highly efficient and runs at 33 fps which is
competitive performance considering our method predicts
both mask and keypoints. Overall performance shows that
our method accomplishes strong quality and speed balance.

5.4. Ablation studies

We provide ablation studies and discuss how different
settings affect overall performance of our method. The ab-
lation studies are conducted on the COCO Person training
set. Results are shown in Table 3 and discussed in detail
next.

Keypoint information. We first investigate the effective-
ness of additionally providing keypoint information which
is represented as a heatmap to Local Segmenter. By pro-
viding more detailed localized information than the bound-
ing box, the keypoint guidance brings a critical performance
improvement. Given the keypoint information, both TMIoU
and TBIoU AP scores increase significantly by +5.7% and
+6.2% AP respectively.

Mixer layer. After the localization is conducted from
Global Pose Tracker, the effectiveness of the Mixer layer
is noticeable in the TBIoU-measure. While TMIoU AP im-
proves marginally when adding the Mixer layer (+0.9%),
TBIoU AP score highly improves by 2.0%. The result indi-
cates that the Mixer layer improves the boundary details by
aggregating sparse body joint information.

5.5. Qualitative Results and Applications

KineMask Benchmark. In Fig. 5, we show the results of
our methods visualized on KineMask benchmark. We ap-
ply different colors to represent different instances. The vi-
sualized results suggest that our model generates segmenta-
tion masks of finer granularity under various action classes.
Video results are included in our project page.

Settings Temporal Mask AP Temporal Boundary AP
Keypoint Mixer AP AP50 AP75 AP AP50 AP75

77.6 95.1 87.1 37.5 81.5 30.5
✓ 83.3 95.3 91.8 43.7 89.1 37.6
✓ ✓ 84.2 96.0 92.7 45.7 91.5 42.8

Table 3. Ablations on the COCO Person training set.

Applications. We also provide a video editing example
using our proposed method in Fig. 6. As our model pre-
dicts both human joint coordinates and high-quality seg-
mentation masks, they can play different roles in real edit-
ing scenarios. First, binary masks for each instance can be
used to separate layers so that we can apply effects such
as changing backgrounds or moving foreground object. In
this example, we apply three different background effects to
different instances. Second, tracking keypoints over video
can act as human-specific motion tracking. Thanks to the
tracked coordinates of body joints, we exploit certain key-
point as an anchor point for the background effect. There-
fore, our method provides two complementary information
at the same time, while even being fast. More application
examples are included in our project page.

6. Conclusion

We addressed the problem of jointly tracking pose and
segmenting masks for all humans in the video, which
has been overlooked in computer vision community. Our
experiments demonstrated that proposed method produces
high-quality masks with fast inference time while it is
conceptually simple. Moreover, by presenting two comple-
mentary information simultaneously, our model exhibits
high utilization for real-world video editing applications.
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