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Abstract

We propose an information-theoretic bias measurement tech-
nique through a causal interpretation of spurious correlation,
which is effective to identify the feature-level algorithmic
bias by taking advantage of conditional mutual information.
Although several bias measurement methods have been pro-
posed and widely investigated to achieve algorithmic fairness
in various tasks such as face recognition, their accuracy- or
logit-based metrics are susceptible to leading to trivial predic-
tion score adjustment rather than fundamental bias reduction.
Hence, we design a novel debiasing framework against the al-
gorithmic bias, which incorporates a bias regularization loss
derived by the proposed information-theoretic bias measure-
ment approach. In addition, we present a simple yet effective
unsupervised debiasing technique based on stochastic label
noise, which does not require the explicit supervision of bias
information. The proposed bias measurement and debiasing
approaches are validated in diverse realistic scenarios through
extensive experiments on multiple standard benchmarks.

Introduction
Various recognition algorithms based on deep neural net-
works have achieved remarkable performance improvement
by learning useful patterns from a large number of train-
ing examples, and have started to be deployed in many
real-world applications. However, the objective of the op-
timization problem is mainly concerned about the final ac-
curacy, which makes trained models vulnerable to unex-
pected decision rules affected by spurious correlation. Al-
though such decision rules work well on most of training
examples, they often lead to poor worst-case generalization
performance and make learned models unfair to the exam-
ples in under-represented groups. For instance, a few exist-
ing works (Kim 2016; Buolamwini and Gebru 2018) have
discovered the performance gap across demographic sub-
groups in real-world face recognition tasks; the accuracy of
a model on darker-skinned women is often much lower than
that on lighter-skinned men. This tendency becomes a major
weakness in achieving algorithmic fairness and generaliz-
ing on unseen test environments with domain or distribution
shifts.
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Mitigating spurious correlation has recently emerged as
an important issue in learning debiased model (Hardt, Price,
and Srebro 2016; Zhao et al. 2017; Zhang, Lemoine, and
Mitchell 2018; Li and Vasconcelos 2019; Wang et al. 2019;
Gong, Liu, and Jain 2020; Sagawa et al. 2020b,a). Given
the target and bias variables, they typically suppress spuri-
ous correlation by making the algorithm independent of the
bias variables while maintaining the predictions to the tar-
get variables. To this end, various measurements about al-
gorithmic fairness or bias have been introduced, e.g., demo-
graphic parity (Calders, Kamiran, and Pechenizkiy 2009),
equality of odds (Hardt, Price, and Srebro 2016), and group-
fairness accuracy (Sagawa et al. 2020a; Zhang et al. 2020).
Although they have been widely used to maintain fairness,
their accuracy- or logit-based bias measurement schemes
may lead to inaccurate algorithmic bias measurement. For
example, we observe that fine-tuning the last linear classifi-
cation layer of a model is sufficient to achieve high unbiased
accuracy and worst-group accuracy, even without updating
the biased representations.

To better quantify algorithmic bias, we first formulate the
spurious correlation from a causal point of view. Following
the strict definition of fairness, we derive the condition of
independence between a bias variable and a predicted tar-
get variable, which is evaluated by their mutual information.
However, in our causal view, it gives a biased estimation of
spurious correlation. To handle the issue, we propose a new
bias measurement technique based on conditional mutual in-
formation using feature representations, which is claimed to
quantify the algorithmic bias more accurately while main-
taining the original objective, fairness.

Based on the new bias measurement, we propose a de-
biasing framework to mitigate the algorithmic bias by aug-
menting a loss term for bias regularization, which is derived
by the conditional mutual information. We also introduce a
simple yet effective unsupervised debiasing technique by ex-
ploiting stochastic label noise, which also prevents a model
from capturing spurious correlation even without the prior
knowledge of bias information. Our experiments verify that
both approaches are helpful for alleviating the algorithmic
bias while preserving model accuracy.

The main contributions of our work are summarized as
follows.

• We propose an information-theoretic measurement tech-



nique for the amount of algorithmic bias via conditional
mutual information on learned feature representations,
which is derived from the causal view of spurious cor-
relation.
• Based on the new bias measurement approach, we pro-

pose two novel debiasing frameworks; one employs a
information-theoretic bias regularization loss and the
other is with stochastic label noise even without the su-
pervision of bias information.
• We evaluate our bias measurement scheme and debias-

ing techniques in various realistic scenarios and achieve
promising results on multiple standard benchmarks.

Setup and Preliminaries
Let (X,Y, Z) ∈ Rm×R×R be a triplet representing a joint
distribution over the space (X ,Y,Z), where X is an input
variable, Y is a target variable, and Z is a bias variable. We
denote a learned model by a function c ∈ C mapping X
to Y . The classification function c : X → Ŷ consists of
the feature extractor g : X → F and the linear classifier
h : F → Ŷ , i.e., c(·) = h(g(·)), where F ∈ Rd is a feature
representation and Ŷ ∈ Y is the predicted target variable.
Following the conventional notations in probability theory,
we will use the comma (,) to denote the joint distribution and
the semicolon (;) to separate the input arguments of mutual
information. For example, I(X;Y,Z) indicates the mutual
information between X and the joint distribution of Y and
Z.

Group-Fairness Accuracy
In classification tasks, unbiased accuracy, worst-group ac-
curacy, or accuracy disparity are employed to address non-
uniform accuracy and evaluate algorithm fairness and ro-
bustness in the presence of dataset bias (Sagawa et al. 2020a;
Zhang et al. 2020; Koh et al. 2021; Zhang and Sang 2020).
Formally, if Yi ∈ {1, ..., A} and Zi ∈ {1, ..., B} denote the
target and bias values of Xi, respectively, then the unbiased
accuracy is given by

1

AB

∑
a,b

∑
i 1(c(Xi) = Yi = a, Zi = b)∑

i 1(Yi = a, Zi = b)
, (1)

which indicates the average accuracy over all groups defined
by a pair of target and bias values. Other metrics, the worst-
group accuracy and the accuracy disparity, are obtained by
the worst accuracy of all groups and the discrepancy be-
tween the best and the worst group, respectively.

However, the unbiased accuracy may not be a good metric
for evaluating the amount of bias in data by itself. Given a
baseline model converged sufficiently with hair color clas-
sification on the CelebA dataset, we fix its feature extractor
f(·) and fine-tune its classification layer h(·) with a simple
resampling technique to reduce class imbalance problem.
We select gender as a bias variable for evaluation. Although
the features in this model remain unchanged even after the
fine-tuning phase, it attains a significant performance gain,
8% points in the unbiased accuracy and 19% points in the
worst-group accuracy. This result implies that the accuracy-

or logit-based bias measurement methods may not be able
to capture the innate bias residing in the features, and that
high fairness scores can be achieved by adjusting prediction
scores in linear classification layers.

Estimating Mutual Information
To identify the feature-level bias, we first introduce the mu-
tual information, which measures the co-dependence be-
tween two variables. For random variables X and Y over
the space X × Y , the mutual information is defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (2)

where H(·) denotes the Shannon entropy. The mutual infor-
mation is also defined by the Kullback-Leibler (KL) diver-
gence between the joint distribution of two random variables
and the products of their marginal distributions:

I(X;Y ) = DKL(P(X,Y )||PX ⊗ PY ), (3)

which implies that the larger the divergence between the
joint and the product of the marginals is, the stronger the
dependence between X and Y is.

However, its exact computation is tractable only for dis-
crete variables or continuous variables under some con-
straints. Recently, Belghazi et al. (Belghazi et al. 2018) pro-
pose a neural estimator of mutual information (MINE) be-
tween continuous high-dimensional random variables, by
offering a lower bound of the mutual information based on
the Donsker-Varadhan representation1 (Donsker and Varad-
han 1975),

I(X;Y ) ≥ Iφ(X;Y ) = sup
φ∈Φ

EP(X,Y )
[fφ(x, y)] (4)

− log(EPX⊗PY
[exp(fφ(x, y))]),

where fφ(·, ·) is a statistical neural network parameterized
by φ ∈ Φ. The expectations EP(X,Y )

and EPX⊗PY
are ap-

proximated using empirical sampling from the joint distribu-
tions and the products of the marginal distributions, respec-
tively. By maximizing the right-hand side of (5) with respect
to φ, we can obtain a tighter lower bound, which leads to a
more accurate estimation of the mutual information.

Cobias: Bias Measurement with Conditional
Mutual Information

We interpret the spurious correlation in a causal view, and
present the bias measurement technique based on the condi-
tional independence derived from the causal view.

Causal Model of Spurious Correlation
We formulate the causal relationship among input image X ,
target label Y , bias variable Z, context prior C, and feature
representation F using a structural causal model (Spirtes
et al. 2000). Figure 1a illustrates the relationship, where the
direct link A → B indicates that A is the cause of B. Note

1The Donsker-Varadhan representation provides the KL-
divergence as a supremum over all functions T : DKL(P ‖ Q) =
supT :Ω→R EP [T ]− log(EQ[exp(T )]).
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(a) The diagram of structural causal model. We aim to measure the
co-dependence between Z and F via Z → X → F , but it is tricky
because there exists a backdoor path Z ← C → Y → X → F .

(b) Venn diagram of information-theoretic measures for F, Y, and
Z. The region in orange denotes the mutual information between
F and Z, excluding the amount of information that explains Y .

Figure 1: The causal and information-theoretic diagrams of our problem setting.

that we adopt the feature vector F , instead of logits or pre-
dicted target values as discussed before.

From the viewpoint of information leakage (Dwork et al.
2012), it is possible to quantify the algorithmic bias by mea-
suring the co-dependence between feature and bias variables
via mutual information, e.g., I(Z;F ). However, as depicted
in Figure 1a, the path between Z and F contains not only
the direct path Z → X → F , but also a backdoor path
Z ← C → Y → X → F . Because the model is trained
to maximize the mutual information between Y and F via
Y → X → F , the backdoor path is constructed naturally if
there exists the correlation between Y andZ. To focus on the
direct path, we should block the backdoor path, which is eas-
ily done by conditioning on Y . Since the path C → Y → X
is a serial connection, conditioning on Y blocks the back-
door path and we can now measure the mutual information
between Z and F via the direct path only.

Cobias: Conditional Mutual Information as Bias
Measurement
Generalizing the mutual information to multivariate cases,
we derive the conditional mutual information with three
variables X , Y , and Z, which is given by

I(X;Y |Z) = EZ [DKL(P(X|Z,Y |Z)||PX|Z ⊗ PY |Z)]. (5)

Note that this equation is an extension of (3) to a condi-
tional setting. The conditional mutual information measures
the conditional independence between the relevant variables,
i.e., I(X;Y |Z) = 0 ⇔ X ⊥ Y |Z. Compared to the stan-
dard setting, this is particularly important if co-dependence
between X and Y changes conditioned on variable Z.

We also consider three variables in our problem setting,
which include feature representation vector F , target vari-
able Y , and bias variable Z. As discussed earlier, we con-
centrate on the mutual information between F and Z condi-
tioned on Y and derive a bias measurement as follows:

Cobias := I(F ;Z|Y ) = I(F ;Z)− I(F ;Z;Y ) (6)
= I(F ;Z, Y )− I(F ;Y ), (7)

where I(F ;Z;Y ) is an interaction information among three
variables and (Z, Y ) ∈ R2 denotes the joint variables of Z

and Y . We estimate the conditional mutual information by
computing the difference between two mutual information
I(F ;Z, Y ) and I(F ;Y ) as expressed in (7), which is de-
rived from the chain rule of mutual information.

Figure 1b presents a Venn diagram of the information-
theoretic measures for those variables. Our bias measure-
ment I(F ;Z|Y ) quantifies the mutual information between
feature and bias variable I(F ;Z) excluding the amount
of the information that also explains the target variable
I(F ;Y ;Z), which corresponds to the region in orange.

Debiasing Frameworks
This section introduces the proposed two debiasing tech-
niques, which are given by the bias-supervised debiasing
regularization and the unsupervised stochastic label noise.

Cobias as Debiasing Regularizer
To mitigate the algorithmic bias, we directly incorporate the
proposed bias measurement I(F ;Z|Y ) as an additional loss
term to learn our model. Then, given the extra supervision
about bias attributes Z, the final objective function is formu-
lated as

min
θ,ψ

`(h(F ;ψ), Y ) + βI(F ;Z|Y )

= min
θ,ψ

`(h(f(X; θ);ψ), Y ) + βIφ(f(X; θ);Z|Y ), (8)

where `(·, ·) is a cross-entropy loss, θ and ψ denote the pa-
rameters of the feature extractor f(·) and the classification
layer h(·), respectively, φ is the parameters of the mutual
information estimator network. The second term in the ob-
jective function plays a role as a regularizer to prevent the
feature representation from being biased, where β is the hy-
perparameter of its weight. Note that this regularization term
aims to reduce inherent bias within feature representations
and has complementary characteristics to the task-specific
loss term. Since the loss does not depend on model archi-
tecture or algorithm, it can be easily adopted in other exist-
ing debiasing frameworks. Because the feature representa-
tion F = f(X; θ) is updated during training, the conditional
mutual information I(F ;Z|Y ) also needs to be re-estimated



each time, which results in the revision of the objective func-
tion as

min
θ,ψ

max
φ

`(h(f(X; θ);ψ), Y ) + βIφ(f(X; θ);Z|Y ). (9)

Because the objective function is a minimax problem, we
alternate to train and update the parameters (θ, ψ) and φ in
every epoch.

To compute I(F ;Z|Y ), we should measure the differ-
ence between two estimated mutual information values,
Iφ1

(F ;Z, Y ) and Iφ2
(F ;Y ) as shown in (7). However, min-

imizing the difference of the two values obtained from the
two different estimators parameterized by φ1 and φ2 may
hamper training stability. We sidestep this issue by minimiz-
ing a surrogate mutual information, I(F, Y ;Z), with respect
to θ, instead of I(F ;Z|Y ). Because I(f(X; θ), Y ;Z) =
I(f(X; θ);Z|Y ) + I(Y ;Z) and I(Y ;Z) is a constant inde-
pendent of θ, minimizing I(f(X; θ);Z|Y ) with respect to θ
is equivalent to minimizing I(f(X; θ), Y ;Z). This enables
us to train the network based on (9) using a single estimator
network and consequently facilitates stable training.

Stochastic Label Noise
We now introduce a simple yet effective unsupervised debi-
asing approach exploiting synthetic label noise. Stochastic
label noise perturbs the target label from its true class to any
other class with a noise rate ρ on each mini-batch indepen-
dently. Let Y and Ỹ be the true and noisy target labels, re-
spectively. Then, p(Ỹ = k|Y = y) = ρ

K−1 for all k 6= y
and 1− ρ for k = y, where K is the number of classes. The
objective function is given by

min
θ,ψ

`(h(f(X; θ);ψ), Ỹ ). (10)

Stochastic label noise, even without any explicit supervi-
sion of bias information, mitigates the algorithmic bias while
minimizing the performance degradation in the classifica-
tion for target variable. Intuitively, this is because spurious
correlation is more susceptible to label noise than true cau-
sation. Label noise gives an implicit ensemble effect (Xie
et al. 2016), which helps to find invariant properties between
a feature representation and its target label. Because spuri-
ous correlation does not appear to be stable properties (Ar-
jovsky et al. 2019; Woodward 2005), label noise helps to
absorb spurious correlation and mitigate algorithmic bias.

From the perspective of information theory, it is natu-
ral that injecting label noise reduces the mutual informa-
tion between target variable Y and bias variable Z, i.e.,
I(Z; Ỹ ) < I(Z;Y ). In addition, by adding stochastic label
noise, the reduction of mutual information between Y and Z
turns out to be more significant than that of Y ’s entropy. Ac-
cording to our experiment, the ratio R := I(Z; Ỹ )/I(Y ; Ỹ )
is 0.187 in the absence of label noise with Y = “hair color”
and Z = “gender” in the CelebA dataset. However, it de-
creases when we add several different levels of label noise,
and the tendency is consistent in other (Y,Z) pairs if they
are correlated. This observation implies that injecting label
noise is helpful for alleviating spurious correlation without

affecting classification performance. Note that this label per-
turbation method is orthogonal to existing debiasing frame-
works and can be applied to them with no modification.

Experiments
Experimental Setup
Datasets We conduct experiments on the three standard
benchmarks: CelebA (Liu et al. 2015), Waterbirds (Sagawa
et al. 2020a), and FairFace (Kärkkäinen and Joo 2021).
CelebA is a large-scale face dataset composed of 202,599
celebrity images with 40 attributes. This dataset is available
for non-commercial research purposes. We follow the origi-
nal train-val-test split (Liu et al. 2015) throughout the exper-
iments. Waterbirds (Sagawa et al. 2020a) is a synthesized
dataset with 4,795 training examples, which are created by
combining bird images in the CUB dataset (Wah et al. 2011)
and background images from the Places dataset (Zhou et al.
2017). Following the setup in (Sagawa et al. 2020a), each
image has two attributes; one is the type of bird, {waterbird,
landbird} and the other is the background place, {water,
land}. FairFace (Kärkkäinen and Joo 2021) is a recently pro-
posed face image dataset containing 108,501 images, which
are collected from the YFCC-100M Flickr dataset (Thomee
et al. 2016). The dataset has seven race groups2, nine age
groups, and two gender groups.

Implementation details We use the ResNet-18 (He et al.
2016) pretrained on ImageNet (Deng et al. 2009) as our
backbone network for all experiments. We train our models
using the stochastic gradient descent method with the Adam
optimizer for 50 epoch. The learning rate is 1×10−4, and the
batch size is 256. We set a weight decay to 1×10−2 for Wa-
terbirds and 1× 10−4 for the other two datasets. The weight
of the bias regularizer β is fixed to 5. The noise rate ρ is set to
0.1 for Waterbirds and 0.2 for the rest. For all methods, we
leverage a simple resampling technique based on the class
size to alleviate the class imbalance issue. Our algorithms
are implemented in the Pytorch (Paszke et al. 2019) frame-
work and all experiments are conducted on a single unit of
NVIDIA Titan XP GPU.

Evaluation metrics In addition to average accuracy, we
evaluate all the compared algorithms with three main met-
rics, Cobias, unbiased accuracy, and worst-group accuracy,
to provide a comprehensive view of the algorithmic bias. We
also adopt other fairness metrics such as bias amplification
(BA) (Zhao et al. 2017), equalized opportunity difference
(EO), and disparate impact (DI) (Hardt, Price, and Srebro
2016), where low values are preferred for the extra metrics.

Results
CelebA Table 1 presents the experiment results on the test
split of the CelebA dataset. Among all attributes, we choose
blond hair, pale skin, and smiling as target variables while
gender is used as the bias variable, setting up three differ-
ent classification tasks. We employ two baseline algorithms,

2White, Black, Indian, East Asian, Southeast Asian, Middle
Eastern, and Latino.



Table 1: Experimental results of our debiasing frameworks on the test split of the CelebA dataset. We set gender attribute to the
bias variable.

Target Cobias Unbiased Acc. Worst-group Acc. BA EO DI Average Acc.
ERM Hair Color 0.435 84.1 53.2 0.014 0.48 0.113 95.1
ERM + label noise Hair Color 0.286 87.8 66.9 -0.002 0.35 0.036 93.8
ERM + bias regularizer Hair Color 0.111 88.1 67.4 0.001 0.31 0.039 94.5
Group DRO (Sagawa et al. 2020a) Hair Color 0.409 89.4 77.6 0.005 0.17 0.044 94.2
Group DRO + label noise Hair Color 0.270 90.6 84.0 -0.004 0.07 0.030 93.5
Group DRO + bias regularizer Hair Color 0.045 90.7 85.4 0.002 0.09 0.018 94.0
ERM Pale Skin 0.387 82.7 59.6 0.012 0.38 0.273 95.5
ERM + label noise Pale Skin 0.192 87.6 73.8 0.002 0.19 0.049 94.7
ERM + bias regularizer Pale Skin 0.066 86.1 68.7 0.006 0.28 0.153 95.2
Group DRO (Sagawa et al. 2020a) Pale Skin 0.346 88.8 84.6 0.005 0.11 0.109 93.8
Group DRO + label noise Pale Skin 0.189 90.3 86.4 0.001 0.06 0.002 94.2
Group DRO + bias regularizer Pale Skin 0.114 89.1 85.5 0.003 0.10 0.063 93.9
ERM Smiling 0.126 92.1 88.6 0.002 0.01 0.008 92.5
ERM + label noise Smiling 0.017 92.4 88.7 -0.015 0.10 0.057 92.8
ERM + bias regularizer Smiling 0.011 92.4 89.0 -0.011 0.08 0.038 92.8
Group DRO (Sagawa et al. 2020a) Smiling 0.130 92.1 89.6 0.003 0.02 0.012 92.2
Group DRO + label noise Smiling 0.019 92.5 90.1 -0.003 0.01 0.011 92.6
Group DRO + bias regularizer Smiling 0.024 92.7 89.9 -0.005 0.01 0.019 92.8

Table 2: Experimental results on the test split of the Water-
birds dataset, where bird type and background place are set
to target and bias variables, respectively.

Cobias Unbiased Worst Average
ERM 0.482 81.4 52.3 83.6
ERM + label noise 0.413 83.0 58.2 83.1
ERM + bias regularizer 0.107 84.3 72.2 88.4
Group DRO 0.376 86.3 72.4 85.7
Group DRO + label noise 0.348 86.7 70.6 84.7
Group DRO + bias regularizer 0.098 86.7 76.9 87.4

including empirical risk minimization (ERM) and group
distributionally robust optimization (Group DRO) (Sagawa
et al. 2020a), to which the proposed two debiasing meth-
ods are applied. As shown in Table 1, incorporating the bias
regularization loss significantly reduces Cobias and other
fairness scores, while preserving the average classification
accuracy. This implies that the proposed bias measurement
is meaningful for identifying the algorithmic bias. We also
observe that applying stochastic label noise is effective to
mitigate the algorithmic bias even without extra supervi-
sion, which validates our claim that spurious correlation is
more sensitive to label noise than true causation. Note that
Group DRO yields high bias scores in spite of its high group-
fairness accuracy, which implies that it may adjust the pa-
rameters for bias-related features in the classification layer
instead of learning debiased representations.

Waterbirds The results on the Waterbirds dataset are pre-
sented in Table 2, where the bird type and the background
place are set to target and bias variables, respectively. Ac-
cording to our experiments, the proposed debiasing frame-
works consistently produce promising results in this small-
scale synthesized dataset. Compared to the CelebA dataset,
injecting label noise is less effective to reduce Cobias in this
dataset, which is partly due to its small size.

Table 3: Experimental results on the test split of the Fairface
dataset, where age and race are set to target and bias vari-
ables, respectively.

Cobias Unbiased Worst Average
ERM 0.019 47.6 16.9 52.1
ERM + label noise 0.017 48.7 18.6 53.2
ERM + bias regularizer 0.004 49.6 18.5 53.4
Group DRO 0.015 48.4 18.8 51.5
Group DRO + label noise 0.004 49.2 16.8 52.5
Group DRO + bias regularizer 0.002 49.4 19.3 53.6

FairFace We also evaluate our frameworks on the Fair-
Face dataset and demonstrate the results in Table 3, where
the target is age and the bias is race. Our frameworks still
improves both Cobias and group-fairness accuracy when
combined with both ERM and Group DRO algorithms. Note
that the Cobias scores are particularly small because the
FairFace dataset is constructed with an emphasis of balanced
race composition, as stated in (Kärkkäinen and Joo 2021).

Analysis
Domain generalization scenario We extend our task to
domain generalization scenario, where training and test sets
belong to different domains. This scenario is realistic be-
cause domain and distribution shifts may occur simultane-
ously. To build this setup, we introduce another variable,
other than for target or bias attributes, which is for domain
attribute. The examples in the training and test datasets are
not supposed to have the same value for the domain vari-
able. For example, if we have a domain attribute, Young, then
training examples may be composed of the images with the
old (Young = false) while test dataset may contain the im-
ages of young people only (Young = true). Since the domain
attribute, Young in this case, is correlated to both the tar-
get and bias variables, it affects the group distributions in
the training and test sets significantly and they are not con-



Table 4: Experimental results in domain generalization setting on the CelebA dataset, where the bias variable is fixed to gender
for all settings.

Target Domain (train) Domain (test) Cobias Unbiased Acc. Worst-group Acc. Average Acc.
ERM Hair Color Old Young 0.432 81.5 43.5 93.8
ERM + label noise Hair Color Old Young 0.367 88.1 68.3 93.9
ERM + bias regularizer Hair Color Old Young 0.272 90.4 79.7 93.0
Group DRO (Sagawa et al. 2020a) Hair Color Old Young 0.387 86.2 68.1 94.2
Group DRO + label noise Hair Color Old Young 0.171 88.6 77.4 93.9
Group DRO + bias regularizer Hair Color Old Young 0.061 89.5 78.6 94.1
ERM Hair Color Slim Chubby 0.234 75.6 29.5 98.1
ERM + label noise Hair Color Slim Chubby 0.107 82.7 54.5 97.9
ERM + bias regularizer Hair Color Slim Chubby 0.073 84.5 54.2 97.9
Group DRO (Sagawa et al. 2020a) Hair Color Slim Chubby 0.192 84.5 67.6 96.5
Group DRO + label noise Hair Color Slim Chubby 0.062 87.2 64.2 96.8
Group DRO + bias regularizer Hair Color Slim Chubby 0.029 87.1 69.7 96.9

Table 5: Ablative results for the weight parameter β of the
bias regularization loss on the CelebA dataset.

Bias weight Cobias Unbiased Acc. Worst-group Acc.
0 0.435 84.1 53.2
1 0.202 84.7 58.3
2 0.183 87.2 62.1
5 0.111 88.1 67.4

10 0.046 87.3 65.6

Table 6: Ablative results for the noise rate ρ in the stochastic
label noise on the CelebA dataset.

Noise rate Cobias Unbiased Acc. Worst-group Acc.
0.0 0.435 84.1 53.2
0.1 0.362 87.3 65.7
0.2 0.286 87.8 66.9
0.4 0.209 86.1 60.6

sistent no longer. Table 4 presents the domain generaliza-
tion results with two domain attributes, Young and Chubby,
where our frameworks outperform the baselines consistently
in the presence of domain shift. We also observe that ERM
with the bias regularizer often gives better results than the
original Group DRO method. This results validate that our
frameworks are particularly effective when domain and dis-
tribution shifts exist at the same time.

Ablation study To validate the effectiveness of the bias
regularization loss and the stochastic label noise scheme, we
perform the ablation study on the weight parameter β and
the noise rate ρ. Table 5 and 6 show the ablative results on
the CelebA dataset with hair color and gender for target and
bias variables, respectively. The results show that increasing
the weight of the bias regularization loss and the noise rate
improves both Cobias and group-fairness accuracy within
sufficiently wide ranges.

Feature visualization Figure 2 illustrates the t-SNE visu-
alizations (Van der Maaten and Hinton 2008) of the feature
embeddings of the samples in the CelebA test split given by
hair color classification. For simplicity, we visualize only
the examples with blond hair. Blue and orange colors denote
female and male, values of the gender bias variable, respec-

tively. Figure 2a, even without using the bias information
(gender) for training, shows that the examples drawn from a
bias group are distinguishable from those from the other bias
group. Compared to vanilla ERM, as illustrated in Figure 2b
and 2c, ERMs with bias regularization and stochastic label
noise successfully make the examples with different bias at-
tributes confused on the feature embedding space, which is
desirable for learning debiased representations.

Comparison to logit-based bias regularizer To analyze
the effectiveness of our feature-level bias measurement, we
compare the feature-based bias regularizer I(F ;Z|Y ) in (9)
with logit-based bias regularizer I(Ŷ ;Z|Y ), where Ŷ =
h(F ) ∈ Y is a predicted target variable from a classifier
based on a fully connected layer, h(·). Table 7 presents
the results from the two regularizers, where the feature-
based approach outperforms its logit-based counterpart sig-
nificantly in terms of both Cobias and group-fairness ac-
curacy. This means that exploiting feature representation
would be more effective to identify and mitigate the algo-
rithmic bias than logits.

Related Work
Facial recognition datasets often contain inevitable biases
due to their insufficiently controlled data collection process,
and consequently, recognition algorithms tend to inherit and
even amplify the dataset bias. To address this issue, numer-
ous debiasing frameworks have been proposed for identi-
fying and mitigating the potential risks posed by dataset
or algorithmic bias. These frameworks can be categorized
in pre-processing (Li and Vasconcelos 2019; Sagawa et al.
2020b; Kamiran and Calders 2012), in-processing (Sagawa
et al. 2020a; Sohoni et al. 2020; Wang et al. 2019; Zhang,
Lemoine, and Mitchell 2018; Gong, Liu, and Jain 2020;
Seo, Lee, and Han 2021; Ragonesi et al. 2021; Wang et al.
2020; Guo et al. 2020), and post-processing (Hardt, Price,
and Srebro 2016; Zhao et al. 2017) ones. Pre-processing
techniques transform the data distribution to keep the train-
ing data balanced across groups, where dataset resampling
or reweighting methods (Li and Vasconcelos 2019; Sagawa
et al. 2020b; Kamiran and Calders 2012) are usually ex-
ploited to balance the distribution by under-sampling the



(a) ERM (b) ERM + label noise (c) ERM + bias regularizer

Figure 2: The t-SNE plots of feature representations from the ResNet-18 models trained with ERM and our debiasing frame-
works on the CelebA dataset using the hair color classification. We visualize the distribution of samples who have the same
target value (blond hair). Blue and orange colors denote different gender values (female and male, respectively).

Table 7: Comparison to the logit-based bias regularization loss on the CelebA dataset with gender bias.

Bias regularizer type Target Cobias Unbiased Acc. Worst-group Acc. Average Acc.
logit-based Hair Color 0.219 84.9 62.7 94.6
feature-based (Ours) Hair Color 0.111 88.1 67.4 94.5
logit-based Pale Skin 0.182 84.0 60.8 95.7
feature-based (Ours) Pale Skin 0.066 86.1 68.7 95.2

majority or over-sampling the minority classes. Debiasing
through in-processing aims to build algorithms that can learn
fair representation, by taking advantage of adversarial train-
ing (Wang et al. 2019; Zhang, Lemoine, and Mitchell 2018),
representation disentanglement (Gong, Liu, and Jain 2020;
Ragonesi et al. 2021), or robust optimization (Sagawa et al.
2020a; Sohoni et al. 2020; Seo, Lee, and Han 2021). Post-
processing methods modify the predicted outputs to meet
fairness criterion, mainly by calibrating the outputs (Hardt,
Price, and Srebro 2016; Zhao et al. 2017). Our debiasing
frameworks belong to in-processing methods, which adopts
a bias regularization loss or injecting label noise during
training to reduce the algorithmic bias. The bias regulariza-
tion loss is somewhat similar to (Ragonesi et al. 2021), but
the major difference is that we introduce conditional mutual
information from the structural causal model. The use of un-
conditional mutual information as a bias regularizer makes
it difficult to achieve our goal, learning the relationship be-
tween features and target variables.

Mutual information is an information-theoretic quantity
to measure the relationship between two variables. Because
it can capture non-linear dependencies between the vari-
ables, the mutual information is widely used in various ar-
eas, including unsupervised representation learning (Comon
1994; Tishby, Pereira, and Bialek 2000; Oord, Li, and
Vinyals 2018; Hjelm et al. 2019; Sun et al. 2020), gener-
ative models (Chen et al. 2016; Qian and Cheung 2019),
reinforcement learning (Oord, Li, and Vinyals 2018), and
fair supervised learning (Kamishima et al. 2012; Fukuchi,
Kamishima, and Sakuma 2015; Ragonesi et al. 2021). How-
ever, the exact computation of mutual information between
continuous variables is basically not tractable. There exists
some non-parametric estimators based on kernel density es-

timation (Kwak and Choi 2002; Suzuki et al. 2008) to deal
with continuous variables, but those are not scalable with
high-dimensional or large-scale data. To overcome this limi-
tation, recent works on mutual information estimation focus
on training neural network to represent its variational lower
bound (Belghazi et al. 2018; Lin et al. 2019; Poole et al.
2019). Our bias measurement takes also advantage of the
variational lower bound (Donsker and Varadhan 1975; Bel-
ghazi et al. 2018) of conditional mutual information.

Conclusion
We proposed an information-theoretic bias measurement
which can identify the feature-level algorithmic bias from
the causal view of spurious correlation. Based on the new
measurement approach, we presented two types of debias-
ing frameworks with bias regularizer or label noise, each of
which can be utilized with or without explicit knowledge of
bias information, respectively. We demonstrated the effec-
tiveness and versatility of proposed frameworks on multiple
standard benchmarks. We also conducted a detailed analysis
of our measurement and frameworks via extensive ablation
studies with more realistic scenarios.

Acknowledgement
This work was partly supported by Samsung Advanced
Institute of Technology, the Bio & Medical Technology
Development Program of the National Research Foun-
dation (NRF) funded by the Korea government (MSIT)
[No. 2021M3A9E4080782], and Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) [No.2021-
0-01343, Artificial Intelligence Graduate School Program
(Seoul National University)].



References
Arjovsky, M.; Bottou, L.; Gulrajani, I.; and Lopez-Paz, D. 2019.
Invariant risk minimization. arXiv preprint arXiv:1907.02893.
Belghazi, M. I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Bengio, Y.;
Courville, A.; and Hjelm, D. 2018. Mutual information neural es-
timation. In ICML.
Buolamwini, J.; and Gebru, T. 2018. Gender shades: Intersectional
accuracy disparities in commercial gender classification. In ACM
FAccT.
Cadene, R.; Dancette, C.; Cord, M.; Parikh, D.; et al. 2019. Rubi:
Reducing unimodal biases for visual question answering. In
NeurIPS.
Calders, T.; Kamiran, F.; and Pechenizkiy, M. 2009. Building clas-
sifiers with independency constraints. In ICDM.
Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; and
Abbeel, P. 2016. Infogan: Interpretable representation learning by
information maximizing generative adversarial nets. In NIPS.
Comon, P. 1994. Independent component analysis, a new concept?
Signal processing, 36(3): 287–314.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. Imagenet: A large-scale hierarchical image database. In
CVPR.
Donsker, M. D.; and Varadhan, S. S. 1975. Asymptotic evaluation
of certain Markov process expectations for large time, I. Commu-
nications on Pure and Applied Mathematics, 28(1): 1–47.
Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel, R.
2012. Fairness through awareness. In ITCS.
Fukuchi, K.; Kamishima, T.; and Sakuma, J. 2015. Prediction with
model-based neutrality. IEICE TRANSACTIONS on Information
and Systems, 98(8): 1503–1516.
Gong, S.; Liu, X.; and Jain, A. K. 2020. Jointly de-biasing face
recognition and demographic attribute estimation. In ECCV.
Guo, J.; Zhu, X.; Zhao, C.; Cao, D.; Lei, Z.; and Li, S. Z. 2020.
Learning meta face recognition in unseen domains. In CVPR.
Hardt, M.; Price, E.; and Srebro, N. 2016. Equality of opportunity
in supervised learning. In NIPS.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual Learn-
ing for Image Recognition. In CVPR.
Hjelm, R. D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.;
Bachman, P.; Trischler, A.; and Bengio, Y. 2019. Learning deep
representations by mutual information estimation and maximiza-
tion. In ICLR.
Kamiran, F.; and Calders, T. 2012. Data preprocessing techniques
for classification without discrimination. Knowledge and Informa-
tion Systems, 33(1): 1–33.
Kamishima, T.; Akaho, S.; Asoh, H.; and Sakuma, J. 2012.
Fairness-aware classifier with prejudice remover regularizer. In
ECML PKDD.
Kärkkäinen, K.; and Joo, J. 2021. Fairface: Face attribute dataset
for balanced race, gender, and age. In WACV.
Kim, P. T. 2016. Data-driven discrimination at work. Wm. & Mary
L. Rev., 58: 857.
Koh, P. W.; Sagawa, S.; Marklund, H.; Xie, S. M.; Zhang, M.; Bal-
subramani, A.; Hu, W.; Yasunaga, M.; Phillips, R. L.; Gao, I.; Lee,
T.; David, E.; Stavness, I.; Guo, W.; Earnshaw, B. A.; Haque, I. S.;
Beery, S.; Leskovec, J.; Kundaje, A.; Pierson, E.; Levine, S.; Finn,
C.; and Liang, P. 2021. WILDS: A Benchmark of in-the-Wild Dis-
tribution Shifts. arXiv.
Kwak, N.; and Choi, C.-H. 2002. Input feature selection by mutual
information based on Parzen window. TPAMI, 24(12): 1667–1671.

Li, Y.; and Vasconcelos, N. 2019. Repair: Removing representation
bias by dataset resampling. In CVPR.
Lin, X.; Sur, I.; Nastase, S. A.; Divakaran, A.; Hasson, U.; and
Amer, M. R. 2019. Data-efficient mutual information neural esti-
mator. arXiv preprint arXiv:1905.03319.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learning face
attributes in the wild. In ICCV.
Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representa-
tion learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan,
G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. 2019. Py-
torch: An imperative style, high-performance deep learning library.
In NeurIPS.
Poole, B.; Ozair, S.; Van Den Oord, A.; Alemi, A.; and Tucker, G.
2019. On variational bounds of mutual information. In ICML.
Qian, D.; and Cheung, W. K. 2019. Enhancing variational autoen-
coders with mutual information neural estimation for text genera-
tion. In EMNLP.
Ragonesi, R.; Volpi, R.; Cavazza, J.; and Murino, V. 2021. Learn-
ing unbiased representations via mutual information backpropaga-
tion. In CVPR Workshop.
Sagawa, S.; Koh, P. W.; Hashimoto, T. B.; and Liang, P. 2020a.
Distributionally robust neural networks for group shifts: On the im-
portance of regularization for worst-case generalization. In ICLR.
Sagawa, S.; Raghunathan, A.; Koh, P. W.; and Liang, P. 2020b. An
Investigation of Why Overparameterization Exacerbates Spurious
Correlations. In ICML.
Seo, S.; Lee, J.-Y.; and Han, B. 2021. Unsupervised Learning of
Debiased Representations with Pseudo-Attributes. arXiv preprint
arXiv:2108.02943.
Sohoni, N.; Dunnmon, J.; Angus, G.; Gu, A.; and Ré, C. 2020. No
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