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Abstract—We propose a novel and unified solution for user-guided video object segmentation tasks. In this work, we consider two
scenarios of user-guided segmentation: semi-supervised and interactive segmentation. Due to the nature of the problem, available
cues – video frame(s) with object masks (or scribbles) – become richer with the intermediate predictions (or additional user inputs).
However, the existing methods make it impossible to fully exploit this rich source of information. We resolve the issue by leveraging
memory networks and learning to read relevant information from all available sources. In the semi-supervised scenario, the previous
frames with object masks form an external memory, and the current frame as the query is segmented using the information in the
memory. Similarly, to work with user interactions, the frames that are given user inputs form the memory that guides segmentation.
Internally, the query and the memory are densely matched in the feature space, covering all the space-time pixel locations in a
feed-forward fashion. The abundant use of the guidance information allows us to better handle challenges such as appearance
changes and occlusions. We validate our method on the latest benchmark sets and achieve state-of-the-art performance along with a
fast runtime.

Index Terms—Video Object Segmentation, User-guided Video Object Segmentation, Semi-supervised Video Object Segmentation,
Interactive Video Object Segmentation, Memory Networks.
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1 INTRODUCTION

V IDEO object segmentation is a task that involves the
separation of the foreground and the background pix-

els in all the frames of a given video. It is an essential
step for many video editing tasks, which is receiving more
attention as videos have become the most popular form of
shared media content. It is a very challenging task as the
appearance of the target object can change drastically over
time and also due to occlusions and drifts. Despite many
previous attempts, it still requires a significant amount of
manual processing to achieve desirable results.

Video object segmentation usually begins with a user
guidance to specify the target object. In this work,
we consider two scenarios of user-guided segmentation:
semi-supervised and interactive segmentation. In the semi-
supervised setting, which is considered to be the standard
method, the complete mask is given for the first frame and
algorithms predict the object masks in the remaining frames
using the first frame as the only source of evidence. Given
an initial mask, the rest of the procedure is automatic thus
easy-to-use, and this simplicity is also useful for comparing
algorithms for research. However, from a practical view-
point, there are researchers who hold the opinion that the
semi-supervised workflow is not suitable for the actual use.
The issue is that it is still difficult to get a complete mask
even for one frame. In addition to this drawback, no error
correction can be made.
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Alternatively, the interactive video object segmentation
that involves human intervention in the loop can be con-
sidered. A round-based workflow, recently proposed in [1],
seeks video-level segmentation for efficiency rather than
frame-by-frame processing. In this workflow, a user repeat-
edly selects a frame and provides hints for segmentation in
a user-friendly form (scribbles) An algorithm then processes
the entire video to refine the current segmentation according
to the new user inputs.

Both scenarios share a similar property, which means
that available cues – video frame(s) with object masks
or scribbles – become richer as the segmentation process
progresses. Specifically, more frames that carry information
for the segmentation become available by the intermedi-
ate mask predictions (in the semi-supervised scenario) or
additional user inputs (in the interactive scenario). This
observation is directly linked to the essential question for
the learning-based approaches: from which frame(s) should
the model learn the cues?

For the semi-supervised scenario, most of the previ-
ous learning-based methods seek clues only from a fixed
number of sources, making it hard to fully exploit the
rich source of information (Fig. 1). In some algorithms, the
features are extracted and propagated from the previous
frame (Fig. 1 (a)) [2], [3]. The main strength of this approach
is that it can deal with changes in appearance better, while
sacrificing robustness against occlusions and error drifts.
Another direction for the deep learning-based approach is to
use the first frame as a reference and independently detect
the target object at each frame (Fig. 1 (b)) [4], [5], [6]. The
pros and cons of this approach are the exact opposite of
those of the previous approach. Some recent methods take
a hybrid approach that uses both the first frame and the
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Fig. 1: Previous DNN-based algorithms extract features in
different frames for semi-supervised video object segmen-
tation (a-c). We propose an efficient algorithm that exploits
multiple frames in the given video for more accurate seg-
mentation (d).

previous frame to take advantage of the two approaches
(Fig. 1 (c)) [7], [8], [9].

As using two frames has been shown to be beneficial, a
natural extension is to use more frames for the segmentation
task. The question is how to design an efficient deep neural
network (DNN) architecture to realize the idea. In the con-
ference version of this paper [10], we proposed a novel DNN
system for the semi-supervised video object segmentation
based on the memory network [11], [12], [13]. Our memory
network can memorize two or more frames and read the
memory by purpose. By exploiting rich reference informa-
tion, our approach can deal with appearance changes, oc-
clusions, and drifts much better than the previous methods.

In this paper, we show that the proposed memory
network is suitable not only for the semi-supervised seg-
mentation, but also for the interactive task. In this case,
the frames that are given user inputs are written onto the
memory. Previously, a few methods were presented for the
round-based interactive video object segmentation. In [1]
and [14], online learning approaches that fine-tune the back-
bone networks using user scribbles have been proposed.
However, online learning is computationally too expensive
to be used within interactive tools, thus this limits practical
uses. Oh et al. recently proposed joint learning of interactive
object segmentation and mask propagation [15]. While this
method shows better accuracy and a faster runtime than
online learning methods, it still suffers from drifting issues
oriented from the repeated mask propagation. On the other
hand, our method performs memory-based object detection,
therefore, it is free from propagation-driven problems and
no online training is required.

Fig. 2 shows applications of our memory network for
two video object segmentation scenarios. In the semi-
supervised scenario, video frames are sequentially pro-
cessed using the previous frames with masks as memory

… …
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write and continue
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Query: current frame
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Fig. 2: The proposed memory networks work with two
video object segmentation scenarios. In the semi-supervised
scenario, the previous frames with the object mask are used
as memory (a). In the interactive scenario, frames given user
interactions are used as memory (b).

and the current frame as query. The newly obtained mask
for the current frame is written into the memory to help
predict the next frame. In the interactive scenario, all the
video frames are segmented in parallel as query using
frames with user inputs as memory. Once the user draws
new scribbles for feedback, the information is added to the
memory and the segmentation is updated accordingly.

Commonly for both applications, the spatio-temporal
attention mechanism is exploited. Specifically, for each pixel
in the query frame, attention on every pixel in the memory
frames is computed, which makes it possible to determine
whether the query pixel belongs to a foreground object or
not. New information can be easily added by putting it
onto the memory, and there is no restriction on the size
of the memory as it is stored externally unlike network
parameters. This memory update greatly helps us to ad-
dress challenges such as appearance changes and occlusions
at no additional cost. Aside from the benefits of saving
more memory frames, our network includes a non-local
spatial pixel matching mechanism that is suitable for pixel-
level estimation problems. Note that the proposed network
structure is compatible with both scenarios with a minor
modification1.

For both tasks, we validate our method on the latest
benchmarks’ validation and challenge sets. For the semi-
supervised video object segmentation task, we use YouTube-
VOS [16] and DAVIS-2016/2017 [17], [18] validation sets
for evaluation. Our method achieve state-of-the-art perfor-
mance outperforming all the existing methods by a large
margin in terms of both speed and accuracy. For the inter-
active video object segmentation task, our method shows
the best performance on the DAVIS-2017 validation set,
and won first place in the DAVIS interactive challenge
2019, surpassing other participants with cutting-edge tech-
niques [19].

1. The only difference is that our network for interactive segmenta-
tion can additionally take scribbles for input.
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This journal paper extends our earlier work [10] by
introducing a new application of the space-time memory
networks to the interactive video object segmentation. Ac-
cordingly, a new training procedure, inference scheme, anal-
ysis, and further results are presented.

2 RELATED WORK

2.1 Semi-supervised Video Object Segmentation

2.1.1 Previous Methods
Propagation-based methods [2], [3], [20], [21] learn an object
mask propagator, a deep network that refines misaligned
mask toward the target object (Fig. 1(a)). To make the
network object-specific, online training data are generated
from the first frame by deforming the object mask [3] or
synthesizing images [20] for fine-tuning. Li et al. [21] inte-
grate a re-identification module into the system to retrieve
missing objects caused by drifts.

Detection-based methods [4], [5], [6], [22], [23], [24] work
by learning an object detector using the object appearance
on the first frame (Fig. 1(b)). In [4], [22], an object-specific
detector learned by fine-tuning the deep networks at the test
time is used to segment out the target object. In [6], [24], to
avoid the online learning, pixels are embedded into feature
space and classified by matching them to templates.

Some recent methods involved taking a hybrid ap-
proach [7], [8]. These methods are designed to take ad-
vantage of both detection and propagation approaches
(Fig. 1(c)). In [7], [8], networks that exploit both the visual
guidance from the first frame and the spatial priors from the
previous frame were proposed. Yang et al. [8] proposed a
meta modulator network that manipulates the intermediate
layers given reference visual and spatial priors. Oh et al. [7]
used a Siamese two-stream network that propagates the
object mask while referring to the visual guidance from the
first frame.

Furthermore, some methods tried to exploit all of the
previous information [25], [26]. Xu et al. [25] proposed to
learn a sequence-to-sequence network that learns the long-
term information in videos. Voigtlaender and Leibe [26]
employed the idea of online adaptation and continuously
update the detector using the intermediate outputs. Our
method can also make use of all the previous information.
Different from the previous approaches, by maintaining
the memory information externally, neither the network
parameters nor the state of the recurrent network are needed
to be updated. Our efficient memory mechanism brings not
only a significant increase in speed but also results in state-
of-the-art accuracy.

2.1.2 Online and Offline Learning
Many of the aforementioned methods fine-tune deep net-
work models on the initial object mask in the first frame
in order to remember the appearance of the target object
during the test time [2], [3], [3], [4], [20], [21], [26]. While
the online learning improves accuracy, it is computationally
expensive, thus limiting its practical use. Offline learning
methods attempted to bypass the online learning while
retaining the same level of accuracy [6], [7], [8], [9], [24], [27],
[28]. A common idea is to design deep networks capable of

object-agnostic segmentation at the test time, based on the
guidance information.

Our framework belongs to the offline learning method,
and adopts a memory mechanism to make use of the
guidance information. Our method maintains intermediate
outputs in the external memory as the guidance, and adap-
tively selects necessary information in runtime. This flexible
use of the guidance information enables our method to
outperform the aforementioned methods by a large margin.
Our memory network is also fast, as the memory reading is
done as a part of the network forward pass, thus no online
learning is required.

2.2 Interactive Video Object Segmentation
2.2.1 Frame-by-frame Methods
Traditional interactive video object segmentation methods
usually follow the procedure of the rotoscoping, where an
algorithm processes a video frame-by-frame given user an-
notations in various types (e.g., scribbles, bounding boxes,
or masks) [29], [30]. In rotoscoping, the user refines and
verifies the object mask at every frame. There is a vast
volume of previous works on this task [29], [30], [31],
[32], [33], [34], [35], [36]. In [33], [36], local classifiers, that
integrate multiple local features such as color and edge, are
proposed for propagating masks to the next frame. In [31],
[32], [35], a spatio-temporal graph of a video is established
and solved by minimizing energy functions. Some methods
solve the segmentation task by tracking [30], [34].

2.2.2 Round-based Methods
Recently, Caelles et al. [1] introduced new workflow for the
video object cutout that focuses on minimizing the user’s
effort. In this scenario, an algorithm handles an entire video
in a batch process after user annotations on a few selected
frames are given. Additional user inputs on a frame affect
the segmentation results for all the video frames. Caelles et
al. [1] proposed modifying their previous one-shot video
object segmentation model [4] to make it applicable for
this interactive scenario. Benard and Gygli [14] combined
an interactive image segmentation method [37] with one-
shot video object segmentation [4]. First, an object is se-
lected by the given initial strokes or clicks, then a one-shot
object detector is learned to segment the object in other
frames. Oh et al. [15] proposed to jointly learn two deep
networks where one operates interactively with the user
and the other propagates the object mask. This approach
outperforms earlier methods based on one-shot learning by
a large margin in terms of speed and accuracy. However,
the accuracy rapidly gets saturated with a small number
of interactions as the results are continually overridden by
propagated information from new interactions that might
not be as good as the current state.

Our interactive system uses round-based interaction.
In contrast to the previous works, our system memorizes
all the user-annotated frames and uses these memories to
detect the target object in a feed-forward fashion. This new
mechanism ensures that our system is robust in handling
the challenges that arise during propagation and also brings
a substantial increase in speed when compared to one-shot
learning approaches.
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Fig. 3: Overview of our framework. Our network consists of two encoders each for the memory and the query frame, a
space-time memory read block, and a decoder. The memory encoder (EncM ) takes an RGB frame and the object mask.
The object mask is represented as a probability map (the softmax output is used for the estimated object masks). The query
encoder (EncQ) takes the query image as input.

2.3 Memory Networks

Memory networks are the neural networks that have ex-
ternal memory where information can be written and read
according to their purpose. Memory networks that can be
trained end-to-end were first proposed in the NLP research
for the purpose of the document Q&A [11], [12], [13]. Com-
monly in those approaches, memorable information is sepa-
rately embedded into key (input) and value (output) feature
vectors. Keys are used to address relevant memories whose
corresponding values are returned. Recently, the memory
networks have been applied to some vision problems such
as personalized image captioning [38], visual tracking [39],
movie understanding [40], summarization [41], and video
inpainting [42].

Inspired by the concept of the memory networks, we
extend the idea to make it suitable for our task, user-guided
video object segmentation. Video frames with user guidance
(e.g., masks and scribbles) form memories, and a frame
that is to be segmented acts as the query. The memory
is dynamically updated with newly predicted masks and
additional user inputs and it greatly helps us to address
challenges such as appearance changes, occlusions, and
error accumulations without the online learning.

Our goal is to have pixel-wise predictions based on a
set of annotated frames as memory. Thus each pixel in the
query frame needs to access information in the memory
frames at different space-time locations. To this end, we
design our memory as 4D tensors in order to contain pixel-
level information and propose the space-time memory read
operation to localize and read relevant information from
the 4D memory2. Conceptually, our memory reading can
be considered to be a spatio-temporal attention algorithm
because we are computing when-and-where to attend in the

2. 4D memory tensors’ shape is (time×height×width×channels).

memory to determine whether a query pixel belongs to a
foreground object or not.

3 SPACE-TIME MEMORY NETWORKS (STM)

In our framework, we consider videos frames with annota-
tions as the memory frames and a video frame for which we
want to get an object mask as the query frame. Various types
of annotation can be used, and we test our system with
binary masks, probability maps (network outputs), hand-
drawn scribbles, and combinations of them. The overview
of our framework is shown in Fig. 3.

Both the memory and the query frames are first encoded
into pairs of key and value maps through the dedicated
deep encoders. Note that the query encoder takes only an
image as the input, while the memory encoder takes both an
image and the corresponding annotation(s). Each encoder
outputs key and value maps. The key is used for address-
ing memory locations. Specifically, similarities between key
features of the query and the memory frames are computed
to determine when-and-where to retrieve relevant memory
values from. Therefore, the key is learned to encode visual
semantics for matching object parts while being robust to
appearance variations. On the other hand, the value stores
detailed information for producing the mask estimation
(e.g., the target object and object boundaries). The values
from the query and the memory contain information for
somewhat different purposes. Specifically, the value for the
query frame is learned in order to store detailed appearance
information for us to decode accurate object masks. The
value for the memory frames learns to encode both the visual
semantics and the mask information about whether each
feature pixel belongs to the foreground or the background.

Subsequently, the keys and values go through our space-
time memory read block. Every pixel on the key feature
maps of the query and the memory frames is densely
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matched over the spatio-temporal space of the video. Rel-
ative matching scores are then used to address the value
feature map of the memory frame, and the corresponding
values are combined to return outputs. Finally, the decoder
takes the output of the read block and reconstructs the mask
for the query frame.

3.1 Key and Value Embedding

3.1.1 Query Encoder
The query encoder takes the query frame as the input.
The encoder outputs two feature maps – key and value
– through two parallel convolutional layers attached to
the backbone network. These convolutional layers serve as
bottleneck layers that reduce the feature channel size of the
backbone network output (to 1/8 for the key and 1/2 for
the value). No non-linearity is applied. The output of the
query embedding is a pair of 3D key and value feature
maps (kQ ∈ RH×W×C/8,vQ ∈ RH×W×C/2), where H is
the height, W is the width, and C is the feature dimension
of the backbone network output feature map.

3.1.2 Memory Encoder
The memory encoder has the same structure except for the
inputs. The input to the memory encoder consists of an RGB
frame and its annotations. The type of annotation depends
on the application3. Refer to Section 3.6 and 3.7 for the
representation of annotations for two different applications.
All the inputs are concatenated along the channel dimension
before being fed into the memory encoder.

If there is more than one memory frame, each of them
is independently embedded into key and value map. Then,
the key and value maps from different memory frames are
stacked along the temporal dimension. The output memory
consists of a pair of 4D key and value feature tensors
(kM ∈ RT×H×W×C/8,vM ∈ RT×H×W×C/2), where T is
the number of the memory frames.

We take ResNet50 [43] as the backbone network for both
the memory and the query encoder. We use the stage-4
(res4) feature map of the ResNet50 as the base feature
map for computing the key and value feature maps. For
the memory encoder, the first convolution layer is modified
to be able to take a tensor with more than three channels by
implanting additional filter channels. The network weights
are initialized from the ImageNet pre-trained model, except
for the newly added filters which are initialized randomly.

3.2 Space-time Memory Read

In the memory read operation, soft weights are first com-
puted by measuring the similarities between all the pixels of
the query key map and the memory key map. The similarity
matching is performed in a non-local manner by comparing
every space-time location in the memory key map with
every spatial location in the query key map. Then, the value
of the memory is retrieved by a weighted summation with
the soft weights and it is concatenated with the query value.

3. For the semi-supervised setting, a mask annotation is used. For the
interactive mode, both a mask and user scribbles are given.

concat
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Fig. 4: Detailed implementation of the space-time memory
read operation using basic tensor operations as described
in Sec. 3.2.

⊗
denotes matrix inner-product.

This memory read operates for every location on the query
feature map and can be summarized as follows:

yi =
[
vQ
i ,

1

Z

∑
∀j
f(kQ

i ,k
M
j )vM

j

]
, (1)

where i and j are the index of the query and the memory
location, Z =

∑
∀j f(kQ

i ,k
M
j ) is the normalizing factor and

[·, ·] denotes the concatenation. The similarity function f is
as follows:

f(kQ
i ,k

M
j ) = exp(kQ

i ◦ k
M
j ), (2)

where ◦ denotes the dot-product.
Our formulation can be seen as an extension of the early

formulation of the differential memory networks [11], [12],
[13] to 3D spatio-temporal space for video pixel match-
ing. Accordingly, the proposed read operation localizes the
space-time location of the memory for retrieval. It is also
related to non-local self-attention mechanisms [44], [45] in
that it performs non-local matching. However, our formula-
tion is motivated by a different purpose as it is designed
to attend to others (memory frames) for the information
retrieval, not to itself for the self-attention. As depicted
in Fig. 4, our memory read operation can be easily im-
plemented by a combination of basic tensor operations in
modern deep learning platforms.

3.3 Decoder

The decoder takes the output of the read operation and
reconstructs the query frame’s object mask. We employ the
refinement module used in [7] as the building block of
our decoder. The read output is first compressed to have
256 channels with a convolutional layer and a residual
block [46], then a number of refinement modules gradually
upscale the compressed feature map by a factor of two
at a time. The refinement module at every stage takes
both the output of the previous stage and a feature map
from the query encoder at the corresponding scale through
skip-connections. The output of the last refinement block
is used to reconstruct the object mask through the final
convolutional layer followed by a softmax operation. Every
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convolutional layer in the decoder uses 3×3 filters, produc-
ing 256-channel output except for the last one that produces
2-channel output. The decoder estimates the mask in a 1/4
scale of the input image.

3.4 Multi-object Segmentation
The description of our framework is based on having one
target object in the video. However, recent benchmarks
require a method that can deal with multiple objects [18],
[25]. To meet this requirement, we extend our framework
with a mask merging operation. We run our model for each
object independently and compute mask probability maps
for all objects. Then, similar to the soft aggregation operation
in [7]. we merge the predicted maps as follow:

pi,m = σ
(
l(p̂i,m)

)
=

p̂i,m/(1− p̂i,m)∑M
j=0 p̂i,j/(1− p̂i,j)

,

s.t. p̂i,0 = ΠM
j=1(1− p̂i,j), (3)

where σ and l represent the softmax and the logit function
respectively, p̂i,m is the network output probability of the
object m at the pixel location i, m=0 indicates the back-
ground, and M is the total number of objects.

In [7], the mask merging is performed only during the
testing as a post-processing step. On the other hand, we
construct the operation as a differential network layer and
apply it during both the training and the testing. Further-
more, if multiple objects are present, we provide additional
information to the memory encoder about other objects.
Specifically, probability masks for all other objects, which
are computed as oi,m =

∑M
j 6=m pi,j are additionally given to

the network.

3.5 Training Data
To overcome the scarcity of training video data, we adopt
two-stage training with different data sources. Our network
is first pre-trained on a simulation dataset generated from
static image data. Then, it is further fine-tuned for real-
world videos through the main training.

3.5.1 Pre-training on Images
One advantage of our framework is that it does not require
long training videos. This is because the method learns the
semantic spatio-temporal matching between distant pixels
without any assumption on temporal smoothness. This
means that we can train our network with only a few
frames4. This enables us to simulate training videos using
image datasets. Some previous works [3], [7] trained their
networks using static images and we take a similar strategy.
A synthetic video clip that consists of 3 frames is generated
by applying random affine transforms5 to a static image
with different parameters. We leverage the image datasets
annotated with object masks (salient object detection – [47],
[48], semantic instance segmentation – [49], [50], [51]) to pre-
train our network. By doing so, we can expect our model to
be robust against a wide variety of object appearances and
categories.

4. Minimum 2; one as the memory frame and the other as the query.
5. We use rotation, sheering, zooming, translation, and cropping.

3.5.2 Main Training on Videos
After the pre-training, we use real video data for the
main training. In this step, training videos from YouTube-
VOS [25] and DAVIS-2017 [18] are used, depending on the
target evaluation benchmark. To make a training sample,
we sample 3 temporally ordered frames from a training
video. To learn the appearance change over a long time, we
randomly skip frames during the sampling. The maximum
number of frames to be skipped is gradually increased from
0 to 25 during the training as in curriculum learning [52].

While the same data is used for training, the training
strategy differs depending on the application as the testing
scheme is different.

3.6 Semi-supervised Video Object Segmentation
In the semi-supervised setting, the ground truth mask of
the target object is given in the first frame and the goal is to
estimate the object masks in all the other frames. In our sys-
tem, video frames are sequentially processed starting from
the second frame using the ground truth annotation given in
the first frame. During the video processing, we consider the
previous frames with object masks (either given at the first
frame or estimated at other frames) as the memory frames
and the current frame without the object mask as the query
frame. Newly obtained masks for the previous frames are
saved as memory, and the accumulation of memories greatly
helps us to address challenges such as appearance changes
and occlusions with no cost.

3.6.1 Training with Growing Memory
Similar to the testing scenario, the size of the memory is
dynamically growing with the network’s previous outputs
during the training. Combining memories is implemented
as a tensor concatenation, thus the whole model is end-
to-end trainable. As the system moves forward frame-by-
frame, the computed segmentation output at the previous
step is added to the memory for the next frame. In the
example of the 3-frame training clip, the second frame’s
mask is estimated by using the memory of the first frame
and its ground truth mask. Then, for the third frame, the
memory of both the first and second frame are used. Losses
computed from all the predictions are back-propagated for
training. The object mask is represented as a single channel
probability map between 0 and 1 (the softmax output is
used for estimated masks). The raw network output without
thresholding, which is a probability map of being a fore-
ground object, is directly used for the memory embedding
to model the uncertainty of the estimation.

3.6.2 Memory Management
Writing all the previous frames on to the memory may raise
practical issues such as GPU memory overflow and slow
running speed. Instead, we select frames to be put onto the
memory by a simple rule. The first and the previous frame
with object masks are the most important pieces of reference
information [3], [7], [8]. The first frame always provides
reliable information as it comes with the ground truth mask.
The previous frame is similar in appearance to the current
frame and thus we can expect accurate pixel matching and
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mask propagation. Therefore, we put these two frames into
the memory by default.

For the intermediate frames, we simply save a new
memory frame every N frame. N is a hyperparameter that
controls the trade-off between speed and accuracy, and we
use N = 5 unless indicated otherwise. It is noteworthy
that our framework achieves the effect of online learning
and online adaptation without additional training. The ad-
vantages of online model updating are easily accomplished
by putting the previous frames into the memory without
updating the model parameters. Thus, our method runs
considerably faster than most of the previous methods while
achieving state-of-the-art accuracy.

3.7 Interactive Video Object Segmentation

For the interactive video object segmentation, we follow the
workflow proposed by Caelles et al. [1]. In this workflow,
the user initially selects a frame and draws scribbles to guide
segmentation. Then, an algorithm computes the segmenta-
tion maps for all the video frames in a batch process. We call
the process of user annotation and segmentation a round,
and the user may go through multiple rounds to enhance
the quality.

We consider video frames given with user annotations as
memory frames. There are two types of scribbles: initial and
feedback scribbles. For the first round, initial scribbles that
indicate the target object are drawn on the object region.
In the following rounds, feedback scribbles are drawn on
false pixels to guide corrections for refinement. In these
cases, all the available information, current segmentation
and scribbles, is used to get a memory embedding6. In
every round, the selected frame and the corresponding user
guidance are written onto the memory. Then, all the video
frames as queries are segmented using the updated memory
in parallel.

3.7.1 Synthetic User Inputs
We train our system with simulated user inputs as in [1],
[15]. Similar to [1], we use a set of morphological opera-
tions to synthesize scribbles. First, regions to draw scrib-
bles are determined. Then, the skeletonization (or thinning)
algorithm [53] is applied to generate scribbles. For initial
scribbles, positive scribbles are drawn on the object region
and there are no negative scribbles. For feedback scribbles.
both positive and negative scribbles are generated from
false negative and positive regions, respectively. Random
affine transforms are applied to the scribbles to simulate
randomness of human activities. We empirically validated
that our model trained with simulated user inputs, despite
its simplicity, works well with real users as shown in our
demo video.

3.7.2 Multi-round Training
Inspired by [15], we employ a multi-round training scheme.
In other words, we make our training loop consist of
multiple rounds of user interactions. This training scheme
is effective in improving the performance of interactive

6. If there is no current segmentation (the first interaction), a zero-
valued mask is inputted.
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Fig. 5: Accuracy versus speed comparison for semi-
supervised video object segmentation on the DAVIS-2017
validation. The FPS axis is in the log scale.

models by reducing the gap between training and a real
testing scenario. To be specific, our training loop runs over
two rounds with a 3-frame training video clip. In the first
round, initial positive scribbles are drawn on the target
object region, then all the video frames (including the first
frame) are segmented as queries using the memory formed
by the first frame. In the next round, feedback scribbles are
drawn on the false regions of the third frame. Then, the
entire video is segmented again using the updated memory
assembled by both the first and third frame. All the outputs
are evaluated to compute losses.

3.8 Implementation Details
For all the experiments, we use randomly cropped 384×384
patches for training. We set the mini-batch size to 4 and
disabled all the batch normalization layers. We minimize
the cross-entropy loss using the Adam optimizer [54]. Pre-
training takes about four days and main training takes about
three days using four NVIDIA GeForce 1080 Ti GPUs. More
training details can be found in the supplementary material.

4 EVALUATION

4.1 Semi-supervised Video Object Segmentation
We evaluate our model on YouTube-VOS [16] and
DAVIS [17], [18] benchmarks. We prepared two models
trained on each benchmark’s training set. For the evaluation
on YouTube-VOS, we used 3471 training videos following
the official split [16]. For DAVIS, we used 60 videos from
the DAVIS-2017 train set. Both DAVIS 2016 and 2017 are
evaluated using a single model trained on DAVIS-2017 for a
fair comparison with the previous works [7], [8]. In addition,
we provide the results for the DAVIS with our model trained
with additional training data from YouTube-VOS. Note that
we use the network output directly without post-processing
to evaluate our method. We measure the region similarity
J and the contour accuracy F for evaluation. For YouTube-
VOS, we uploaded our results to the online evaluation
server [16]. For DAVIS, we used the official benchmark
code [17]. Our code and model will be available online.
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TABLE 1: The quantitative evaluation of semi-supervised
video object segmentation on YouTube-VOS [25] validation
set. Results for other methods are directly copied from [16],
[27], [28], [55].

Seen Unseen

Overall J F J F

OSMN [8] 51.2 60.0 60.1 40.6 44.0
MSK [3] 53.1 59.9 59.5 45.0 47.9
RGMP [7] 53.8 59.5 - 45.2 -
OnAVOS [26] 55.2 60.1 62.7 46.6 51.4
RVOS [28] 56.8 63.6 67.2 45.5 51.0
OSVOS [4] 58.8 59.8 60.5 54.2 60.7
S2S [25] 64.4 71.0 70.0 55.5 61.2
A-GAME [27] 66.1 67.8 - 60.8 -
PReMVOS [56] 66.9 71.4 75.9 56.5 63.7
BoLTVOS [55] 71.1 71.6 - 64.3 -

Ours 79.4 79.7 84.2 72.8 80.9

TABLE 2: The quantitative evaluation of semi-supervised
video object segmentation on the DAVIS-2016 validation
set. OL indicates online learning. (+YV) indicates the use
of YouTube-VOS for training.

OL J Mean F Mean Time(s)

BVS [57] 60.0 58.8 0.37
OFL [58] 68.0 63.4 120
PLM [5] X 70.0 62.0 0.3
VPN [59] 70.2 65.5 0.63
OSMN [8] 74.0 72.9 0.14
SFL [60] X 74.8 74.5 7.9
PML [24] 75.5 79.3 0.27
S2S (+YV) [25] X 79.1 - 9
MSK [3] X 79.7 75.4 12
OSVOS [4] X 79.8 80.6 9
MaskRNN [2] X 80.7 80.9 -
VideoMatch [6] 81.0 - 0.32
FEELVOS (+YV) [9] 81.1 82.2 0.45
RGMP [7] 81.5 82.0 0.13
A-GAME (+YV) [27] 82.0 82.2 0.07
FAVOS [61] 82.4 79.5 1.8
LSE [62] X 82.9 80.3 -
CINN [23] X 83.4 85.0 >30
PReMVOS [56] X 84.9 88.6 >30
OSVOSS [22] X 85.6 86.4 4.5
OnAVOS [26] X 86.1 84.9 13
DyeNet [21] X 86.2 - 2.32

Ours 84.8 88.1 0.10
Ours (+YV) 88.7 89.9 0.10

4.1.1 YouTube-VOS

YouTube-VOS [25] is the latest large-scale dataset for video
object segmentation and it consists of 4453 videos annotated
with multiple objects. The dataset is about 30 times larger
than the popular DAVIS benchmark that consists of 120
videos. It also has validation data for the unseen object
categories. Thus, it is suitable for measuring the general-
ization performance of different algorithms. The validation
set consists of 474 videos including 91 object categories. It
has separate measures for 65 of seen and 26 of unseen object
categories. We compare our method to existing methods that
are trained on YouTube-VOS training set by [16], [27], [55].
As shown in Table 1, our method significantly outperforms
all other methods in every evaluation metric.

TABLE 3: The quantitative evaluation of semi-supervised
video object segmentation on the DAVIS-2017 validation
set. OL indicates online learning. (+YV) indicates the use
of YouTube-VOS for training. *: average of J Mean and F
Mean. † indicates timing approximated from DAVIS-2016
assuming linear scaling in the number of objects.

OL J Mean F Mean Time(s)

OSMN [8] 52.5 57.1 0.28†

FAVOS [61] 54.6 61.8 1.2†
VidMatch [6] 56.5 68.2 0.35
OSVOS [4] X 56.6 63.9 18†
MaskRNN [2] X 60.5 - -
OnAVOS [26] X 64.5 71.2 26
OSVOSS [4] X 64.7 71.3 9†

RGMP [7] 64.8 68.6 0.26†
CINN [23] X 67.2 74.2 >120
A-GAME (+YV) [27] 67.2 72.7 0.14†
FEELVOS (+YV) [9] 69.1 74.0 0.51
DyeNet [21] X *74.1 9.32†
BoLTVOS [55] X 72.0 80.6 1.45
PReMVOS [56] X 73.9 81.7 37.6

Ours 69.2 74.0 0.13
Ours (+YV) 79.2 84.3 0.13

4.1.2 DAVIS-2016

DAVIS-2016 [17] is one of the most popular benchmark
datasets for video object segmentation tasks. We use the
validation set that contains 20 videos annotated with high-
quality masks, each with a single target object. We compare
our method with the state-of-the-art methods in Table 2.
In the table, we indicate the use of online learning and
provide the approximate runtimes of each method. Most of
the previous top-performing methods relied on online learn-
ing that severely harms the running speed. Our method
achieves the best accuracy out of all the competing methods
without online learning, and produces competitive results
with the top-performing online learning based methods
while running in a fraction of the time. Our method trained
with additional data from YouTube-VOS outperforms all the
other methods by a large margin.

4.1.3 DAVIS-2017

DAVIS-2017 [18] is a multi-object extension of DAVIS-2016.
The validation set consists of 59 objects in 30 videos. In
Table Table 3, we report the results of multi-object video seg-
mentation on the validation set. Again, our method shows
the best performance among fast methods without online
learning. With additional training data from YouTube-VOS,
our method largely outperformed all the previous state-of-
the-art methods. Our results on the test-dev set are included
in the supplementary materials.

The large performance leap achieved by using additional
training data indicates that DAVIS is too small to train
a generalizable deep network due to over-fitting. It also
explains why top performing online learning methods on
the DAVIS benchmark do not show good performance on
the large-scale YouTube-VOS benchmark. Online learning
methods are hardly aided at all by a large amount of training
data. Those methods usually require an extensive parameter
search (e.g., data synthesis methods, optimization iterations,
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Fig. 6: The qualitative results of semi-supervised video object segmentation on YouTube-VOS and DAVIS. Frames are
sampled at important moments (e.g.before and after occlusions).

learning rate, and post-processing), which is not easy to do
for a large-scale benchmark.

4.1.4 Qualitative Results
Fig. 6 shows qualitative examples of our results. We have
chosen challenging videos from YouTube-VOS and DAVIS
validation sets and sample important frames (e.g.before and
after occlusions). As can be seen in the figure, our method
is robust to occlusions and complex motions. All of our pre-
computed results will be available online.

4.2 Interactive Video Object Segmentation

In the interactive video object segmentation, the users are
deeply involved in the process of segmentation. The seg-
mentation results are made based on the user inputs, and
the user draws scribbles to give a correction based on
the segmentation results. Thus, it is difficult to quantify
the performance of the interactive model as it is affected
by the user’s skill. To resolve this issue, Caelles et al. [1]
introduced a framework for evaluating interactive video
object segmentation7. First, initial scribbles are collected by
hiring human annotators. Three different initial scribbles for
each video sequence are provided and each one serves as a
starting point for interactive segmentation. For the feedback
scribbles, the framework involves the robot agent acting like
a human who draws scribbles according to the intermediate
results of an algorithm. Through this framework, interactive
algorithms produce results that work with the same user,
and thus a fair comparison can be made.

The performance is measured using two metrics: area
under the curve (AUC) and the accuracy at 60 seconds
(J&F@60s). Both metrics are computed on a curve showing
the mean of the region similarity (J ) and the contour
accuracy (F ) as a function of time. AUC measures the
overall accuracy of the segmentation process that may go

7. the DAVIS evaluation framework is available at https://github.
com/albertomontesg/davis-interactive.

through multiple rounds. J&F@60s measures the accuracy
with a 60 second time budget. To be specific, this metric is
computed by performing an interpolation of the curve at 60
seconds.

4.2.1 State-of-the-art Comparison
We compare our methods against both the baseline and the
state-of-the art methods: Scribble-OSVOS [1] and IPNet [15].
Scribble-OSVOS [1] is a baseline method that adapts OS-
VOS [4] to train only on scribbles instead of the full mask.
IPNet [15] is one of the best performing methods and it won
the DAVIS interactive challenge 2018 [1]. IPNet incorporates
two networks each for the interactive image segmentation
and the mask propagation. During the evaluation, we use
the validation set of the DAVIS-2017 dataset and we let
the methods interact with the robot agent up to 8 times.
The J&F scores with the growing number of interactions
are shown in Fig. 7. The baseline method is not on the
same level as the other methods. In the first round, IPNet
shows the best performance, but from the second round,
our method takes a big lead with additional interactions
creating a huge performance gap.

4.2.2 DAVIS Interactive Challenge 2019
To compare our method with other cutting-edge techniques,
we submitted our results to the DAVIS interactive challenge
2019 [63]. For the challenge, the test-dev set of DAVIS-
2017, where the ground truth segmentation is not publicly
available, is used. The challenge results are summarized
in Table 4. Our method won first place outperforming all
the challenge participants by a large margin [19].

4.2.3 Qualitative Results
Fig. 8 shows qualitative examples of the interactive seg-
mentation process with our model. We use the DAVIS
evaluation framework for simulating the user inputs. As
shown in Fig. 8, our method is capable of segmenting
target objects in challenging test videos that include similar-
looking objects and complex object motions with the aid of

https://github.com/albertomontesg/davis-interactive
https://github.com/albertomontesg/davis-interactive
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legend.

TABLE 4: Leaderboard for The DAVIS interactive challenge
2019.

Participant AUC J&F@60s

Ours 78.3 79.1
Yuk Heo (Korea University) [64] 64.7 60.9
Zihang Lin (Sun Yat-sen University) [65] 62.1 60.1
YK CL (Youku Company) [66] 58.9 49.1
Yang Yu 52.4 53.2

user scribbles. For the real user example, we provide a demo
video that records real-time demos with real users using our
GUI application. Our demo software will be made available
online.

5 ANALYSIS

5.1 Training Data

We trained our model through two training stages: the pre-
training on static images [47], [48], [49], [50], [51] and the
main training on video datasets [18], [25]. In this section,
we validate and analyze the effect of the pre-training and

TABLE 5: Training data analysis on YouTube-VOS and
DAVIS-2017 validation sets. We compare models trained
through different training stages (Sec. 3.5). In addition, we
report the cross-validation results (i.e., evaluating DAVIS
using the model trained on YouTube-VOS, and vice versa.).

Variants YouTube-VOS DAVIS-2017

Overall J F

Pre-training only 69.1 57.9 62.1
Main training only 68.2 38.1 47.9
Full training 79.4 69.2 74.0

Cross validation 56.3 78.6 83.5

TABLE 6: Memory management analysis on the validation
sets of YouTube-VOS and DAVIS. We compare results ob-
tained by different memory management rules. We report
Overall and J Mean scores for YouTube-VOS and DAVIS,
respectively. Time is measured on DAVIS-2017.

Memory
frame(s)

YouTube
-VOS

DAVIS
Time

2016 2017

First 68.9 81.4 67.0 0.07
Previous 69.7 83.2 69.6 0.10
First & Previous 78.4 87.8 77.7 0.11
+ Every 5 frames 79.4 88.7 79.2 0.13

the main training through the ablation study on the semi-
supervised video object segmentation. In Table 5, we com-
pare the performance of our model trained with different
training data. In addition, we provide a cross-dataset vali-
dation to measure the generalization performance.

5.1.1 Pre-training Only
It is interesting that our pre-training only model outper-
forms the main train only model as well as all other methods
on YouTube-VOS, without using any real video. However,
we get maximum performance by using both training strate-
gies.

5.1.2 Main Training Only
Without the pre-training stage, the performance of our
model drops by 11.2 in the Overall score on YouTube-
VOS [25]. This indicates that the amount of training video
data is still insufficient to bring out the potential of our net-
work even though YouTube-VOS [25] provides more than
3000 training videos. In addition, very low performance on
DAVIS implies a severe over-fitting issue as the training loss
was similar to the complete model (we did not apply early
stopping). We conjecture that diverse objects encountered
during the pre-training helped our model’s generalization
and also to prevent over-fitting.

5.1.3 Cross Validation
We evaluate our model trained on DAVIS to YouTube-VOS,
and vice versa. Our model trained on DAVIS shows limited
performance on YouTube-VOS. This was an expected result
because DAVIS is too small to learn a generalization ability
to other datasets. On the other hand, our model trained on
YouTube-VOS performs well on DAVIS and outperforms all
other methods.

5.2 Effect of Memory

In this section, we analyze what are the positive effects
of larger memory. In the semi-supervised scenario, we put
the previous frames with estimated object masks into the
memory. On the other hand, frames given user inputs are
used to build up the memory in the interactive scenario.

5.2.1 Semi-supervised Scenario
For the minimal memory consumption and fastest runtime,
we can save either the first and/or the previous frames in
the memory. For the maximum accuracy, our final model
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Fig. 8: The qualitative results for interactive video object segmentation on the DAVIS-2017 validation set. For every round,
additional memory frames (initial or feedback) with user interaction and the corresponding results are shown. Scribbles
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Fig. 9: Visualization of our space-time read operation. We first compute the similarity scores in Eq. (2) for the pixel(s) in
the query image (marked in red), then visualize the normalized soft weights to the memory frames. (top) We visualize the
averaged weights for the pixels inside the object area. (bottom) We visualize the retrieved weights for the selected pixel.
We enlarged some memory frames because the area of interest is too small for visualization.
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Fig. 10: Visual comparisons of the results both with and
without the use of the intermediate frame memories.

saves a new intermediate memory frame at every fifth frame
in addition to the first and the previous frames as explained
in Sec. 3.6.2.

We compare different memory management rules in Ta-

ble 6. Saving both the first and the previous frame in the
memory is most important, and our model achieves state-
of-the-art accuracy with the two memory frames. This is
because our model is strong enough to handle large ap-
pearance changes while being resistant to drifting and error
accumulation by effectively exploiting the memory. On top
of that, having the intermediate frame memories further
boosts performance by tackling extremely challenging cases
as shown in Fig. 10.

For a deeper analysis, we show the frame-level accuracy
distribution in Fig. 11. We sort Jaccard scores of all the
objects in all the video frames and plot the scores in order to
analyze the performance on challenging scenes. We compare
our final model (Every 5 frames) with First and Previous
to check the effect of using additional memory frames.
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Fig. 11: Jaccard score distribution on DAVIS-2017.

While both settings perform equally well on the successful
range (over 30th percentile), the effect of additional memory
frames becomes clearly visible for difficult cases (under 30th

percentile). The huge accuracy gap between 10th and 30th

percentile indicates that our network handles challenging
cases better with additional memory frames. Comparing
First only and Previous only, the previous frame looks more
useful for handling failure cases.

5.2.2 Interactive Scenario

As can be seen in Fig. 7, we can easily observe the positive
effect of larger memory in the interactive scenario. For our
method on the plot, the number of interactions (rounds) also
indicates the number of frames in the memory. The more
user inputs, the better the segmentation quality.

The memory in the interactive scenario has different
characteristics than that in the semi-supervised scenario.
While scribbles is a sparse and incomplete form of anno-
tation, it is reliable as it is provided by the user. In contrast,
most of the mask annotations (except for the first frame)
in the semi-supervised scenario are from the network thus
it often contains errors. Accumulated scribbles eventually
provide more information than the complete mask annota-
tion. For example, our interactive model outperforms our
semi-supervised model in more than 5 user interactions.

5.3 Weight Sharing for Encoders

The query and memory encoders are different depending on
whether or not the object location information (i.e., segmen-
tation masks) needs to be encoded together. In designing a
shared encoder, the type and amount of resources that can
be saved depends on when location information is injected.
Late sharing is a scheme in which the networks share the
weights after the location information is injected. By this
way, the network parameters in the deeper layers (e.g. Res3
and Res4) – that account for most of the parameters –
can be shared. However, there is no advantage in terms of
the computational complexity (FLOPs) as the intermediate
feature representation cannot be shared. Early sharing is a
scheme in which the networks shares the weights before the
location information is fused. Specifically, the forepart of the
backbone network is shared but it starts to have separated
weights once the mask information is injected for memory
encoding. With this sharing scheme, we can spare not only

Memory Encoding

conv1

res2

conv1

res2

Query  Encoding

Late Sharing

res4

res3

RGB RGB + MASK

conv1

res2

RGB RGB MASK

conv 3x3

conv 1x1

Memory EncodingQuery  Encoding

Early Sharing

conv 7x7

res4

res3

res4

res3

Fig. 12: Our weight sharing models. The examples assume
that the late sharing model shares res3 and res4, and the
early sharing model shares conv1 and res2.

⊕
indicates

element-wise addition.

TABLE 7: Weight sharing configurations and results. Our
weight sharing models are evaluated on DAVIS-2017 vali-
dation set in the semi-supervised setting. GFLOPs are com-
puted assuming the input resolution as 384× 384.

.
Sharing
Type

Shared Blocks DAVIS-2017 Two Encoders

R2 R3 R4 J F #Params GFLOPs

Late X X X 77.4 81.8 8.56M 19.67
X X 77.0 82.2 8.77M 19.67

Early
X 78.3 83.4 16.90M 17.53
X X 78.5 83.2 15.80M 14.66
X X X 75.2 80.6 10.25M 11.11

No 78.2 84.3 17.09M 19.67

the number of parameters but also the computational over-
head by reusing pre-computed features. Examples of late
and early sharing models are illustrated in Fig. 12.

The results from our weight sharing models are shown
in Table 7. Late sharing significantly reduces the number
of parameters (almost by a half) while not sacrificing the
performance a lot. Early sharing is advantageous not only
to the model size but also to computational complexity. Sur-
prisingly, early sharing to a certain extent does not degrade
the performance.

5.4 Memory Visualization
In Fig. 9, we visualize our memory read operation to vali-
date the learned space-time matching. As can be observed
in the visualization, our read operation accurately matches
corresponding pixels between the query and the memory
frames.

6 CONCLUSION

We have presented a novel space-time memory network for
the user-guided video object segmentation. Two types of
user guidance are considered: masks in the semi-supervised
scenario and scribbles in the interactive scenario. In both
scenarios, our method performs the best among the existing
methods in terms of both the accuracy and the speed. We
believe the proposed space-time memory network has great
potential to become a breakthrough method in addressing
many other pixel-level estimation problems. Regarding
future work, we are looking for other applications that
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are suitable for our framework including object tracking,
interactive image/video segmentation, and inpainting.
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