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Abstract—Video inpainting aims to fill in spatio-temporal holes in videos with plausible content. Despite tremendous progress on deep
learning-based inpainting of a single image, it is still challenging to extend these methods to video domain due to the additional time
dimension. In this paper, we propose a recurrent temporal aggregation framework for fast deep video inpainting. In particular, we
construct an encoder-decoder model, where the encoder takes multiple reference frames which can provide visible pixels revealed
from the scene dynamics. These hints are aggregated and fed into the decoder. We apply a recurrent feedback in an auto-regressive
manner to enforce temporal consistency in the video results. We propose two architectural designs based on this framework. Our first
model is a blind video decaptioning network (BVDNet) that is designed to automatically remove and inpaint text overlays in videos
without any mask information. Our BVDNet wins the first place in the ECCV Chalearn 2018 LAP Inpainting Competition Track 2: Video
Decaptioning. Second, we propose a network for more general video inpainting (VINet) to deal with more arbitrary and larger holes.
Video results demonstrate the advantage of our framework compared to state-of-the-art methods both qualitatively and quantitatively.
The codes are available at https://github.com/mcahny/Deep-Video-Inpainting, and https://github.com/shwoo93/video decaptioning.
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1 INTRODUCTION

1 R EMOVING unwanted items in a video is a practical and2

crucial problem as it can help numerous video restoration3

and editing tasks such as scratch restoration, automatic caption4

removal, and undesired object removal. This also opens more5

opportunities to video content generation and manipulation tasks6

such as inserting new elements in a scene [1], [2], [3], [4].7

Furthermore, there are several semi-online streaming scenarios8

such as automatic content filtering and visual privacy filtering.9

Despite tremendous progress on deep learning-based inpaint-10

ing of a single image, it is still challenging to extend these11

methods to video domain due to the additional time dimension.12

A straightforward way of video inpainting is to apply image13

inpainting on each frames individually, but this comes with a clear14

limitation that the video results are unstable and inconsistent over15

time. The second row in Figure 10 shows such an example when16

using the state-of-the-art feed-forward image inpainting [5] in a17

frame-by-frame manner.18

The challenge of video inpainting is to fill in the holes with19

contents that are spatially plausible and temporally coherent at20

the same time. Early works address this problem by using a21

patch based greedy selection [6], a per-frame diffusion based22

technique [7], or a global flow field based optimization [8]. While23

the last shows the state-of-the art [8] (3rd row in Figure 10)24

quality video results, the trade-off against the effectiveness is its25

limited practicality due to its intensive computational cost and26

vulnerability to noisy optical flows. Recently, Wang et al. [9]27

proposed a deep learning based method for video inpainting,28
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CombCN, by combining 3D and 2D CNNs. However, their setting 29

works on low-resolution videos (e.g., 128×128 pixels) with fixed 30

square holes, limiting its application to general scenarios. 31

In this paper, we propose a deep feed-forward framework for 32

video inpainting which performs two core functions: 1) temporal 33

aggregation and 2) recurrent propagation of visible information 34

over time. We use a set of sampled video frames as the reference 35

to take visible contents to fill the hole of a target frame. With 36

the recurrent propagation, we reuse the useful information from 37

the previous time step and enforce temporal consistency. As real- 38

world applications, we consider two types of distractor in a video: 39

overlaid caption and unwanted foreground object. First, in the 40

context of media and video from various languages, there are 41

frequently text captions or encrusted commercials. These text 42

overlays occlude parts of frames and hinder visual perception 43

for both human and machines. In terms of a video caption re- 44

moval problem, the holes are mostly narrow and have regularized 45

locations and patterns. This makes it difficult to create mask 46

annotations, but instead enables using the captions themselves as 47

pseudo indicators for the holes. On the other hand, the task of 48

foreground object removal deals with large and arbitrary holes 49

with more motions involved, and the mask annotations can be 50

obtained by human labeling or off-the-shelf video object segmen- 51

tation algorithms. 52

To deal with two different video inpainting scenarios, we pro- 53

pose two network designs based on the same proposed framework. 54

Our first model is a blind video decaptioning network (BVDNet) 55

which is designed to automatically detect and inpaint overlaid 56

captions in a video without any mask information (i.e. blind to 57

input mask). Second, we propose a network for video object 58

removal (VINet) which explicitly warps visible contents between 59

frames to inpaint arbitrary and object-level holes indicated by 60

input masks. 61

We conduct extensive experiments to validate the contributions 62

https://github.com/mcahny/Deep-Video-Inpainting
https://github.com/shwoo93/video_decaptioning
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of our design choices. We show that our formulation of temporal63

feature aggregation and recurrent propagation leads to the video64

results that are much more accurate and visually pleasing than65

existing frame-by-frame learning based methods (e.g. [5]), and66

similar to computation-heavy optimization methods (e.g. [8]). The67

example results by our proposed VINet are shown in the last row68

of Figure 10. Our model sequentially processes video frames of69

arbitrary length and requires no optical flow computation at test70

time.71

Our contributions can be summarized as follows:72

• We propose a novel video inpainting meta-architecture73

equipped with two core functions: temporal feature ag-74

gregation and recurrent propagation. Based on our 3D-75

2D encoder-decoder framework, we design a blind video76

decaptioning network (BVDNet) for caption removal, and77

a more general video inpainting network (VINet) for78

foreground object removal.79

• Our BVDNet automatically detects and inpaints overlaid80

captions in a video without any mask information. Trained81

by the residual learning and our robust loss function,82

BVDNet outperforms other competing methods and runs83

in real time (50+ fps). We took the first place in the ECCV84

Chalearn 2018 LAP Video Decaptioning Challenge.85

• Our VINet deals with arbitrary and large (object-level)86

holes. It learns to explicitly compensate motions and pick87

up visible contents from neighbor frames. We also propose88

to recurrently propagate information from the previous89

time step to enforce temporal consistency.90

2 RELATED WORK91

2.1 Image and Video Inpainting92

Significant progress has been made on image inpainting [5], [10],93

[11], [12], [13], [14], [15], [16], [17], [18], to the point where94

commercial solutions are now available [19]. However, video95

inpainting algorithms have been under-investigated. This is due to96

the additional time dimension which introduces major challenges97

such as severe viewpoint changes, temporal consistency preserv-98

ing, and high computational complexity. Most recent methods99

found in the literature address these issues using either object-100

based or patch-based approaches.101

In object-based methods, a pre-processing is required to split a102

video into foreground objects and background, and it is followed103

by an independent reconstruction and merging step at the end104

of algorithms. Previous efforts which fall under this category105

are homography-based algorithms that are based on the graph-106

cut [20], [21]. However, the major limitation of these object-based107

methods is that the synthesized content has to be copied from the108

visible regions. Therefore, these methods are mostly vulnerable to109

abrupt appearance changes such as scale variations, e.g. when an110

object moves away from the camera.111

In patch-based methods, the patches from known regions are112

used to fill in a mask region. For example, Patwardhan et al. [22],113

[23] extend the well-known texture synthesis technique [12] to114

video inpainting. However, these methods either assume static115

cameras [22] or constrained camera motion [23] and are based on116

a greedy patch-filling process where the early errors are inevitably117

propagated, yielding globally inconsistent outputs.118

To ensure the global consistency, patch-based algorithms have119

been cast as a global optimization problem. Wexler et al. [24]120

present a method that optimizes a global energy minimization 121

problem for 3D spatio-temporal patches by alternating between 122

patch search and reconstruction steps. Newson et al. [25] extend 123

this by developing a spatio-temporal version of PatchMatch [19] 124

to strengthen the temporal coherence and speed up the patch 125

matching. Recently, Huang et al. [8] modify the energy term 126

of [24] by adding an optical flow term to enforce temporal 127

consistency. Although these methods are effective, their biggest 128

limitations are high computational complexity and the absolute 129

dependence upon the pre-computed optical flow which cannot be 130

guaranteed to be accurate in complex sequences. 131

To tackle these issues, we propose a deep learning based video 132

inpainting meta-architecture. To efficiently exploit temporal infor- 133

mation coming from multiple frames, we construct a 3D encoder 134

- 2D decoder model, that can provide traceable features revealed 135

from the video dynamics. Based on the proposed framework, we 136

design two video inpainting networks that can be applied to blind 137

and non-blind video inpainting task respectively. 138

For the blind video inpainting task, we choose an example 139

of video decaptioning task which is to inpaint text overlays in a 140

”blind” manner. This is of the practical use because media/video 141

data from various languages frequently include text captions or 142

subtitles which reduce visual attention for both machine and hu- 143

man; Also, annotating pixel masks for every frames is impractical 144

since many video subtitles include semi-transparent shadows (as 145

in Figure 5) where it is ambiguous to label the pixels in binary. We 146

show that our method successfully inpaints text overlays in videos 147

without any mask information. 148

We then extend our framework to perform a general video 149

inpainting task with the inpainting masks are given (i.e., non- 150

blind). The missing regions are more arbitrary and larger than the 151

previous task. We argue that our method provides a better prospect 152

than the previous optimization-based techniques in that deep 153

CNNs are excellent at learning spatial semantics and temporal 154

dynamics from an ever-growing vast amount of video data. 155

There is a relevant and concurrent work on deep video in- 156

painting presented by Wang et al. [9]. However, we tackle more 157

challenging and general scenarios. Wang et al. tested their method 158

on the datasets (FaceForensics, 300Vw, Caltech) where each set 159

has narrow semantic fdiversity and trivial camera movements. 160

Such strong semantic and motion prior is not readily available in 161

real-world videos. Also, they use a fixed and stationary mask over 162

time, which is also not plausible in the real-world setting. On the 163

other hand, we validate our method using videos in the wild from 164

the Youtube-VOS dataset along with real dynamic object masks. 165

Our experiment shows that joint function of temporal aggregation 166

and recurrence is crucial to handle real dynamic contents. 167

2.2 Other Multi-frame Video Methods 168

Most multi-frame methods for video restoration [26], [27] or 169

enhancement [7], [28] (e.g. video super-resolution, video interpo- 170

lation) usually focus on pixel-level fusion with low-level and local 171

motion compensation. On the other hand, video inpainting has to 172

deal with semantic-level and object-sized holes, which requires a 173

high-level understanding of context with a larger receptive field 174

in both space and time. When compared to video super-resolution 175

task (VSR), video inpainting should address the challenging flow 176

synthesis problem because the pixel-level flow on the missing 177

pixels cannot be linearly scaled as in (VSR) due to the large size 178

and arbitrariness of the hole. 179
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Fig. 1: Overview of the proposed meta-architecture. The skip connections, recurrent feedback, and the used objective functions are
denoted by gray, red, and black arrows, respectively. During inference, we apply the model in an auto-regressive manner to obtain
output sequences.

To this end, we propose a non-trivial well designed system for180

video inpainting. We identify the key functions: content genera-181

tion, hierarchical feature transfer, motion detection, and coherency182

enforcement. We then incorporate them into a single pipeline,183

achieving an end-to-end architecture. Our method is comparably184

effective to the optimization based method, and superior to the per-185

frame deep inpainting method [5], while having fast computation186

speed (i.e. 50fps for decaptioning, and 10fps for inpainting).187

3 PROBLEM FORMULATION188

Video inpainting aims to fill in arbitrary missing regions in189

video frames XT
1 := {X1, X2, ..., XT }. The reconstructed re-190

gions should be either accurate as in the ground truth frames191

Y T
1 := {Y1, Y2, ..., YT } or seamlessly merged into the sur-192

rounding space and time. We formulate video inpainting as a193

problem of learning a mapping function from XT
1 to the predic-194

tion Ŷ T
1 := {Ŷ1, Ŷ2, ..., ŶT }, where the conditional distribution195

p(Ŷ T
1 |XT

1 ) should be identical to p(Y T
1 |XT

1 ). Learning this196

mapping leads to the realistic and temporally consistent video197

generation. To simplify the problem, we factorize the conditional198

distribution to a product form based on a Markov assumption.199

Accordingly, the naive frame-by-frame method can be represented200

as201

p(Ŷ T
1 |XT

1 ) =
T∏

t=1

p(Ŷt|Xt). (1)

However, for the video results to be consistent in both space and 202

time, we propose that the generation of t-th frame Ŷt should be 203

coherent with 1) the neighboring pixels Xt+N
t−N within a temporal 204

radius N , and 2) the previously generated frame Ŷt−1. Thus, we 205

propose to learn the conditional distribution 206

p(Ŷ T
1 |XT

1 ) =
T∏

t=1

p(Ŷt|Xt+N
t−N , Ŷt−1). (2)

4 METHOD 207

Figure 1 provides an overview of our proposed meta-architecture 208

f which consists of two parallel pathways for temporal ag- 209

gregation and recurrent propagation, respectively. For temporal 210

aggregation, we use a set of sampled frames as the reference to 211

pick up visible contents to fill the hole of a target frame. We set 212

the radius N to 2, such that we use two lagging and two leading 213

frames as the reference at each time step. To maximize useful 214

temporal information, we attempt to find the optimal sampling 215

interval. With the minimum interval of 1, the reference frames 216

will contain non-significant changes and be redundant. If we jump 217
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with a large stride, on the other hand, irrelevant new scenes will218

be included. We empirically find that the stride of 3 performs219

the best in our preliminary experiments. That is, we sample220

Xt+N
t−N := {Xt−6, Xt−3, Xt, Xt+3, Xt+6} at each time step,221

which gives the temporal window spanning over about 15 frames.222

For recurrent propagation, we connect the output Ŷt−1 from the223

previous time step t− 1 to the current time step t via a feedback.224

This is to reuse the previously collected cues, and to enforce225

temporal consistency in the video results. Therefore, a tuple of226

(Xt+N
t−N , Ŷt−1) constructs the total inputs at each time step.227

At inference, the output video Ŷ T
1 is obtained by sequen-228

tially running the function f in an auto-regressive manner. Our229

formulation of multi-to-single frame aggregation and recurrent230

propagation works as a backbone structure (meta-architecture)231

for our downstream network designs: a blind video decaptioning232

network (BVDNet) in Section 4.1, and a video inpainting network233

(VINet) for foreground object removal in Section 4.2.234

4.1 BVDNet for Video Caption Removal235

In the context of an inpainting problem, the overlaid captions236

in a video create holes that are mostly narrow and systematic237

in their locations and patterns. We exploit such regularity as an238

indicator for the corrupted regions in video frames, and construct239

the input with a stack of corrupted RGB frames without any mask240

information (3-channel). The overall decaptioning algorithm is241

illustrated in Figure 2.242

Aggregation via 3D convolutions. A stack of reference frames243

and a target frame is fed into the aggregation pathway. Since most244

captions in a video are not continuously moving, it is efficient to245

use 3D convolutions to directly aggregate spatio-temporal features246

in a search window, without serious motion compensation between247

frames. Another pathway consists in 2D CNN, and takes an output248

frame from the previous time step to recurrently propagate useful249

information throughout time.250

Residual Learning. Directly estimating all pixels in a frame251

may needlessly touch uncorrupted pixels. To compensate the252

absence of the mask information, we train our model by a residual253

learning algorithm. Specifically, the final output is yielded by254

summing the input target frame {Xt} and the predicted residual255

image {Rt} in a pixel-wise manner. This trains our network to256

automatically detect corrupted pixels, and also prevent the global257

tone distortion.258

Formally, with the proposed BVDNet fBVD, the blind video259

decaptioning problem can be modeled as260

Ŷt = fBVD(Xt+N
t−N , Ŷt−1) +Xt. (3)

4.1.1 Network Design261

Our core design is a hybrid encoder-decoder model, where the262

encoder consists of two sub-networks: 3D CNN and 2D CNN.263

The decoder follows a normal 2D CNN design as in other264

image generation networks. The network is designed to be fully265

convolutional to handle arbitrary size input. The final output video266

is obtained by applying fBVD in an auto-regressive manner.267

3D-2D Hybrid Encoder. Our strategy is to collect potential268

hints from multiple reference frames that can provide visible269

pixels revealed from the scene dynamics. Also, we enforce the270

generation of the target frame to be consistent with the previous271

generation. We construct a hybrid encoder consisting of two272

streams: temporal aggregation stream and recurrence stream.273

The first stream consists in 3D convolutions which can directly274

Fig. 2: Overview of BVDNet: blind video decaptioning net-
work. We propose a hybrid encoder-decoder model, where the
aggregation encoder stream takes multiple input frames and the
decoder reconstructs the middle frame. The temporal-pooling skip
connections carry low-level information. By a residual learning
algorithm, our model directly learns to recover the corrupted pixels
in the input. The output is then fed into a feedback connection for
a recurrent learning to the next time step.

capture spatio-temporal features from the neighbor frames. This 275

helps in understanding the short-term video-level context which 276

is required to recover the target frame. The input tensor shape is 277

H ×W × T × C , where H , W and C are the height, width and 278

channels of the input frame {X}, and T = 2N + 1. Here, the 279

goal is to remove text overlays in the middle frame (3th out of 5). 280

The temporal dimension of feature gradually reduces to 1 as the 281

features are temporally pooled through the 3D convolution layers. 282

The second is a 2D CNN recurrence stream which takes the 283

previously generated frame, of size H×W×1×C , as input. This 284

stream works as a reference that the current generation should be 285

coherent with. Then, the output feature of this recurrence stream 286

is combined with the temporally-pooled one-frame feature from 287

the aggregation stream by element-wise summation. Since the 288

feature maps from the two streams are comparatively different on 289

the corrupted regions, the combined hybrid feature map implicitly 290

encodes the knowledge on where to attend. 291

Bottleneck and Time-Pooling Skip Connections. The encoder 292

is followed by bottleneck layers that consist of several dilated 293

convolutions, as suggested in [16]. The large receptive field size 294

helps to capture wide spatial context which supports the recovery 295

of the corrupted pixels. The following is a 2D CNN decoder which 296

is symmetric to the recurrence encoder stream. 297

We apply skip connections only between the 3D encoder 298

stream and the decoder. Each skip connections pass through a 299

3D convolution layer that pools the temporal dimension into one 300

frame, so that the feature map can be directly concatenated with 301

the decoder feature maps of equal dimension. Despite the concern 302

raised by Yu et al. [18] that the skip connections carry almost 303

zero features on the corrupted regions, our temporal-pooling skip 304

connections are immune to this problem since they can adaptively 305

aggregate low-level features that are complementary to the oc- 306

cluded points in the middle frame. 307

Our full BVDNet is trained to generate the residual frame 308

{Rt}, which is added with the input middle frame {Xt} to 309

produce the final output {Ŷt}. 310
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Fig. 3: Overview of VINet. Our proposed VINet takes in multiple input frames (Xt−6, Xt−3, Xt, Xt+3, Xt+6) and the previously
generated frame (Ŷt−1), and generates the inpainted frame (Ŷt) as well as the flow map (Ŵt⇒t−1). We employ both flow sub-networks
and mask sub-networks at 4 scales (1/8, 1/4, 1/2, and 1) to aggregate and synthesize feature points progressively. For temporal
consistency, we use a recurrent feedback along with two losses: flow loss and warp loss. The orange arrows denote the ×2 upsampling
for residual flow learning as in [29] for 5 reference streams, while the thinner orange arrow denotes only the stream from Ŷt−1. The
mask sub-networks are omitted in the figure for the simplicity.

4.1.2 Loss Functions311

We train the BVDNet by minimizing the following loss function,312

L = λRLR + λstLst, (4)

where LR is an image reconstruction loss, and Lst is a313

temporal warping loss. λR and λst are the weighting coefficients314

which are set to 1 and 2 respectively throughout the experiments.315

A simple way for image reconstruction is to use the L1316

loss following the previous studies [5], [17]. For the structural317

details, We apply the SSIM loss [30] with a small patch window318

according to the setting of the competition evaluation metric.319

Inspired by [31], we also use a first-order matching term, which320

compares image gradients of the prediction with the ground truth,321

and encourages the prediction to have not only close-by values but322

also similar local structure. To this end, the image reconstruction323

loss LR includes three terms as324

L1 =
∥∥∥Ŷt − Yt∥∥∥

1
, (5)

LSSIM = (
(2µŶt

µYt + c1)(2σŶtYt
+ c2)

(µ2
Ŷt

+ µ2
Yt

+ c1)(σ2
Ŷt

+ σ2
Yt

+ c2)
), (6)

Lgrad. =
∥∥∥∇W (Ŷt − Yt)

∥∥∥
1
+
∥∥∥∇H(Ŷt − Yt)

∥∥∥
1
, (7)

LR = L1 + LSSIM + Lgrad., (8)

where Ŷt, Yt denote the predicted and target ground truth frames325

respectively. µ, σ denote the average, variance. c1, c2 denote two326

stabilization constants which are respectively set to 0.012, 0.032.327

∇W ,∇H are the image gradients along the horizontal and vertical328

axis.329

With the recurrence stream in the encoder, we optimize our330

model with additional temporal warping loss which is widely331

used in video generation works [32], [33], [34]. The temporal332

consistency loss Lst is defined as333

Lst =
K∑
t=2

∥∥∥Ot⇒t−1 � (Ŷt − φt⇒t−1(Yt−1))
∥∥∥
1
, (9)

where � is the element-wise product operator. O denotes the 334

binary occlusion mask and φ denotes the flow warping operation 335

using the optical flow between consecutive target frames Yt and 336

Yt−1. The occlusion is detected by the method of [35] and the 337

optical flow are obtained by the pretrained FlowNet2 [36]. For the 338

training, we set the number of recurrences to 5 (K = 5). 339

4.1.3 Training and Testing 340

Dataset. We used the ECCV Chalearn 2018 LAP Video Decap- 341

tioning Challenge dataset for training, validation, and testing. It 342

is a large dataset of 5 seconds (125 frames) MP4 video clips in 343

128× 128 pixel RGB frames, containing both encrusted subtitles 344

({X}) and without subtitles ({Y }). The dataset contains a wide 345

variety of captions with different colors, size, positions, and shad- 346

ows. The training and validation set consist in 70K and 5K sample 347

pairs of input and ground truth video clips, respectively. The 348

testing set consists of 5K input video clips without ground truth. 349

We convert every video clip into PNG images in our experiments. 350

Training. We adopt horizontal flipping and color jittering for 351

data augmentation. We train our model for 200 epochs with a batch 352

size of 128. Adam optimizer is used with β = (0.9, 0.999) and a 353

learning rate of 0.001. The training takes 3 days on two NVIDIA 354

GTX 1080 Ti GPUs. For the competition, we train our model 355

without the recurrence stream in the encoder and the warping loss. 356

Testing. For the pixels where the absolute difference between 357

the input middle frame {Xt} and the prediction {Ŷt} is less than 358

0.01 in [0, 1] scale, we copy the values from the input frame. 359

Finally, we convert PNG files back to MP4 videos. 360

Evaluation Metric. To evaluate the quality of the reconstruc- 361

tion, the mean square error (MSE), the peak signal-to-noise ratio 362

(PSNR), and the structural dissimilarity, DSSIM i.e. (1-SSIM)/2, 363

are used. 364

4.2 VINet for Video Object Removal 365

Removing foreground objects in a video involves arbitrary and 366

large holes with various motions. In contrast to the video caption 367
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removal, we assume that the inpainting masks are given for368

all video frames, and construct the input by concatenating each369

RGB frame with a corresponding mask channel. To deal with370

these differences, we propose several modifications to the network371

design and the training scheme. We train VINet to explicitly fetch,372

arrange, and combine visible feature points from neighbor refer-373

ence frames. The overview of our VINet is illustrated in Figure 3.374

Modification 1: Aggregation via Explicit Feature Alignment.375

Instead of relying on the 3D convolutions with the input frame376

stack, VINet learns to align each of the reference frames onto377

the target frame in a feature level. The visible patches from the378

reference feature maps are then picked up and aggregated onto the379

missing regions of the target feature map. To this end, we use flow380

and mask sub-networks to learn the flow and composition mask381

between the frames, respectively.382

Modification 2: Recurrence. Another modification is made383

on the recurrence. Instead of having a separate pathway until384

the bottleneck, the previous prediction frame is fed into the385

aggregation pathway and is considered as another reference frame386

for the next time step.387

In the following, we provide more detailed description on388

the network design, training, and testing of our VINet and the389

differences to BVDNet.390

4.2.1 Network Design391

Encoder. The major difference resides in the encoder part392

which is a multiple-tower network. All the towers consist in393

the 2D CNN and represent the target and reference streams. We394

consider the center frame as the target, and the other frames as395

the references which can provide visible contents to the target.396

All input frames are concatenated with their corresponding masks397

along the channel axis, and fed into each of the streams. In398

practice, we use a 6-tower encoder; There are 1 target stream that399

takes the center target frame Xt, and 5 weight-sharing reference400

streams that each take two lagging (Xt−6, Xt−3), two leading401

frames (Xt+3, Xt+6), and the previous prediction (Ŷt−1). The402

reference feature points are explicitly copy-pasted and refined403

through the following feature flow learning and learnable feature404

composition.405

Feature Flow Learning. Before directly combining the target406

and reference features, we propose to explicitly align the feature407

points from each streams. This helps our model easily borrow408

traceable features from the neighbor reference frames. To this end,409

we insert flow sub-networks to estimate the flows from each of the410

reference feature maps onto the target feature map in four different411

scales (1/8, 1/4, 1/2, and 1). We adopt the coarse-to-fine structure412

of the PWCNet [29] to model this hierarchical flow learning. For413

the aggregation part, the feature flow warping for the first three414

scales is supervised only by pixel reconstruction loss, i.e., good415

feature warping will successfully pick up visible contents and416

inpaint the target hole. The recurrence part involves the explicit417

flow supervision (warp loss and flow loss in Section 4.2.2) which418

is only given at the finest scale (i.e. 1) and only between the con-419

secutive two predictions, where we use the pseudo-ground truth420

flow Wt⇒t−1 between Yt and Yt−1 obtained from FlowNet2 [36].421

Learnable Feature Composition. Given the aligned feature422

maps from the five reference streams, they are concatenated along423

the time dimension and fed into a 5 × 3 × 3 (THW) convolution424

layer that produces a spatio-temporally aggregated feature map425

Fs′ with the time dimension of 1. This is designed to dynamically426

select reference feature points across the time axis, by highlighting427

the features complementary to the target features and ignoring 428

otherwise. For each 4 scales, we employ a mask sub-network to 429

combine the aggregated feature map Fs′ with the reference feature 430

map Fr . The mask sub-network consists of three convolution 431

layers and takes the absolute difference of the two feature maps 432

|Fs′−Fr| as input and produces single channel composition mask 433

m, as suggested in [37]. By using the mask, we can gradually 434

combine the warped features and the reference features. At the 435

scale of 1/8, the composition is done by 436

Fc1/8 = (1−m1/8)� Fr1/8 +m1/8 � Fs′
1/8
. (10)

Decoder. To pass image details to the decoder, we employ 437

skip connections as in U-net [38]. To prevent the concern raised 438

by [18] that skip connections contain zero values at the masked 439

region, our skip-connections pass the composite features similarly 440

to Equation (10), as 441

Fc1/4 = (1−m1/4)� Fr1/4 +m1/4 � Fs′
1/4
, (11)

Fc1/2 = (1−m1/2)� Fr1/2 +m1/2 � Fs′
1/2
. (12)

At the finest scale, the estimated optical flow Ŵt⇒t−1 is used 442

to warp the previous output Ŷt−1 to the current raw output Ŷ ′t. 443

We then blend this warped image and the raw output with the 444

composition mask m1, to obtain our final output Ŷt as 445

Ŷt = (1−m1)� Ŷ ′t +m1 � Ŵt⇒t−1(Ŷt−1). (13)

4.2.2 Loss Functions 446

We train our network to minimize the following loss function, 447

L = λRLR + λstLst + λltLlt + λFLF , (14)

where LR and LW are the reconstruction loss, and warping loss 448

respectively, as in Section 4.1.2. 449

The difference in the warping loss is that LW includes not only 450

the short-term warping loss Lst, but also the long-term warping 451

loss Llt as 452

Lst =
K∑
t=2

∥∥∥Ot⇒t−1 � (Ŷt − φt⇒t−1(Yt−1))
∥∥∥
1
, (15)

Llt =
K∑
t=2

∥∥∥Ot⇒1 � (Ŷt − φt⇒1(Y1))
∥∥∥
1
. (16)

Similar to Equation (9), we use [35] to obtain the occlusion 453

mask (O) and FlowNet2 [36] to extract the optical flow between 454

the target frames (W ). φ denotes the warping operation. We 455

use both short-term and long-term temporal losses. Note that we 456

use ground truth target frames in the warping operation since 457

the synthesizing ability is imperfect during training. We set the 458

number of recurrence to 5 (K = 5) as in Section 4.1. 459

We learn the explicit flow learning on the consecutive output 460

frames. The flow loss LF is defined as 461

LF =
T∑

t=2

(
∥∥∥Wt⇒t−1 − Ŵt⇒t−1

∥∥∥
1
+
∥∥∥Yt − φ̂t⇒t−1(Yt−1)

∥∥∥
1
),

(17)
whereWt⇒t−1 is the pseudo-ground truth backward flow between 462

the target frames, Yt and Yt−1, extracted by FlowNet2 [36]. In 463

Equation (17), the first term is the endpoint error between the 464

ground truth and the estimated flow, and the second term is the 465

warping error when the estimated flow, Ŵt⇒t−1, is used to warp 466

the previous target frame to the next target frame. 467
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4.2.3 Two-Stage Training468

We employ a two-stage training scheme to gradually train the core469

functions for video inpainting; 1) We first train the model without470

the recurrent feedback to focus on learning the temporal feature471

aggregation. At this stage, we only use the reconstruction loss LR;472

2) We then add the recurrent feedback, and fine-tune the model473

using the full loss function (Equation (14)) for temporally coherent474

generation. We use videos in the Youtube-VOS dataset [39] as475

ground truth for the training. It is a large-scale dataset for video476

object segmentation containing 4000+ YouTube videos with 70+477

common objects. All video frames are resized to 256×256 pixels478

for training and testing. We further finetune VINet on 512× 512479

pixels frames to process higher resolution videos.480

Video Mask Dataset. In general video inpainting, the spatio-481

temporal holes consist in diverse motion and shape changes. To482

simulate this complexity during training, we create the following483

four types of video masks.484

1) Random square: We randomly mask a square box in485

each frame. The visible regions each of input frames are486

mostly complementary so that the network can clearly487

learn how to align, copy, and paste neighboring feature488

points.489

2) Flying square: The motion of the inpainting holes is490

rather regularized than random in real scenarios. To491

simulate such regularity, we shift a square by a uniform492

step size in one direction across the input frames.493

3) Arbitrary mask: To simulate diverse hole shapes and494

sizes, we use the irregular mask dataset [17] which495

consists of random streaks and holes of arbitrary shapes.496

During training, we apply random transformations (trans-497

lation, rotation, scaling, sheering).498

4) Video object mask: In the context of the video object re-499

moval task, masks with the most realistic appearance and500

motion can be obtained from video object segmentation501

datasets. We use the foreground segmentation masks of502

the YouTube-VOS dataset [39].503

Synthetic training Data. We create the training video data to504

simulate the object removal scenarios. In particular, we overlay505

the aforementioned different types of masks onto the background506

video frames. The overlaid region is then filled with zero values507

to simulate the foreground object that has been taken away. The508

original background pixels are considered as the ground truth509

values during training. We construct the input by concatenating510

the corrupted frames and the corresponding binary masks.511

4.2.4 Testing512

We assume that the inpainting masks for all video frames are513

given. To avoid any data overlap between training and testing,514

we obtain object masks from the DAVIS dataset [40], [41], the515

public benchmark dataset for video object segmentation. It con-516

tains dynamic scenes, complex camera movements, motion blur517

effects, and large occlusions. The inpainting mask is constructed518

by dilating the ground truth segmentation mask. Our method519

processes frames recursively in a sliding window manner similarly520

to the BVDNet.521

5 EXPERIMENTAL RESULTS522

We evaluate our video inpainting framework and its two down-523

stream network designs both quantitatively and qualitatively. We524

conduct ablation studies to validate the effectiveness of the differ- 525

ent design components. We measure visual quality and temporal 526

smoothness of their video results, and conduct user studies to 527

compare human subjective preferences on different methods. 528

5.1 BVDNet Results on Video Caption Removal 529

We conduct ablation studies using the publicly released validation 530

dataset to investigate the effectiveness of different design compo- 531

nents. Our evaluation is mainly based on the metrics used in the 532

competition. We report the competition results and visualize the 533

learned convolutional filters. 534

5.1.1 The Impact of 3D Aggregation Encoder Stream 535

One of our core design choices is to use a 3D CNN aggregation 536

encoder stream in conjunction with a following 2D decoder. To 537

validate the effectiveness of this design, we construct two naive 538

baselines to compare with: a 3D encoder-3D decoder and a 2D 539

encoder-2D decoder models. We note that all models in this 540

experiment contain a single-stream encoder without the recurrence 541

encoder stream for a clearer comparison. We construct all the mod- 542

els with a comparable number of parameters. As shown in Exp 1, 543

2, and 3 in Table 1, our 3D-2D model shows the best performances 544

in all three metrics. This implies that the spatio-temporal feature 545

aggregation from the neighbor frames indeed helps our target task, 546

providing our model with a distinct advantage over the frame-by- 547

frame competitor. On the other hand, it is emprically shown that 548

adopting heavy 3D-3D operation does more harm than good. This 549

implies that making use of the neighbor frames does not always 550

work, but a careful architectural design is required. 551

5.1.2 The Impact of Loss Functions 552

We test our loss functions both quantitatively and qualitatively. 553

First, we remove each loss terms gradually from our full loss 554

function. Again, we use a model with the single-stream encoder, 555

and thus the temporal warping loss is not considered in this 556

experiment. As shown in Exp 3, 4, 5 and 6 in Table 1. We 557

observe complementary effects of each loss terms. The grad.L1 558

loss improves the performance when used together with L1 loss. 559

Also, adding SSIM loss improves the structural similarity score 560

(DSSIM) more than adding the gradient loss does. This leads us 561

to use our full combination (i.e. L1 + Lgrad. + LSSIM ), which 562

achieves best scores. 563

We also provide qualitative analysis as shown in Figure 4. The 564

model trained with the L1 loss alone produces relatively blurry 565

outputs. We alleviate this problem by adding the gradient L1 loss 566

and the SSIM loss. We observe that adding these losses helps 567

recovering fine structures such as texture and edges. 568

5.1.3 The Impact of Recurrence Encoder Stream 569

We investigate the effectiveness of our recurrence stream in the 570

encoder, together with the temporal warping loss. We evaluate 571

both frame-level image quality and temporal consistency. As 572

shown in Exp 5 and 6 in Table 1, the recurrence stream improves 573

the visual quality of the video results. In addition, we quantita- 574

tively compare the temporal consistency in video results with and 575

without the recurrence stream. We measure the temporal error over 576

a video sequence, which is the average pixel-wise Euclidean color 577

difference between consecutive frames. We use FlowNet2 [36] 578

to obtain pseudo-ground truth optical flow as in the training. 579

Table 4 shows that having the recurrence significantly reduces 580
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Architecture Losses Recurrence Evaluation Metric
Exp 3D-3D 2D-2D 3D-2D L1 grad. L1 SSIM Enc. Stream MSE PSNR DSSIM

1 X X 0.0031 28.4590 0.0652
2 X X 0.0012 33.6803 0.0279
3 X X 0.0011 34.1029 0.0261
4 X X X 0.0010 34.2251 0.0276
5 X X X 0.0011 34.2089 0.0240
6 X X X X 0.0010 34.6544 0.0225

7 (Full BVDNet) X X X X X 0.0010 34.7055 0.0222

TABLE 1: The ablation studies on architectural design, loss functions, and recurrence stream. We evaluate on ChaLearn 2018 LAP
Inpainting Track2 validation set.

Ours + GAN loss - Skip
MSE 0.0010 0.0015 0.0010
PSNR 34.7055 31.2257 34.3892

DSSIM 0.0222 0.0384 0.0233

TABLE 2: The ablation studies on additional GAN loss and
without residual learning. We evaluate on ChaLearn 2018 LAP
Inpainting Track2 validation set.

Value MSE PSNR DSSIM
3 0.0011 33.7895 0.0247

Number 5 0.0010 34.7055 0.0222
of frames 7 0.0010 34.5063 0.0229

9 0.0010 34.6260 0.0226

TABLE 3: The ablation studies on the hyperparamter: number
of input frames. We evaluate on ChaLearn 2018 LAP Inpainting
Track2 validation set.

the temporal error. Our approach does not sacrifice either visual581

quality and temporal stability, and the qualitative examples are582

shown in Figure 5.583

5.1.4 Adding GAN Loss584

The adversarial training encourages the decaptioning results to585

move towards the natural image manifold. We test the effect of586

the adversarial training by adding the GAN loss on top of our full587

loss function. We use 8 × 8 PatchGAN [42] as our discriminator588

network which aims to classify whether 8× 8 overlapping image589

patches are real or fake. However, we observe no visible qualitative590

improvement and the quantitative performance slightly dropped591

(Table 2), which is consistent with the results in [43].592

5.1.5 Removing Residual Image Shortcut593

We investigate the importance of the residual learning. If we594

remove the skip connection from the input middle frame to the595

decoder output, the network should recover all the pixels from596

scratch without referencing the input pixels. As shown in Table 2,597

the residual learning leads to better performances, demonstrating598

its effectiveness in video decaptioning task.599

5.1.6 Number of Input Frames600

In Table 3, we perform an experiment to determine the hyperpa-601

rameter for our BVDNet, which is the number of input frames. The602

number of input frames directly relates to the size of input batches,603

which enables controlling the amount of temporal information to604

be dealt with for each time step. Table 3 shows the comparison605

Encoder version Temporal Errors
without recurrence (BVDNet-Exp 6) 0.00117

with recurrence (BVDNet-Exp 7) 0.00090

TABLE 4: Temporal errors (warping errors) of BVDNet with and
without the temporal consistency constraint. We evaluate on 500
clips of ChaLearn 2018 LAP Inpainting Track2 validation set.

(a) (b) (c) (d) (e)

Fig. 4: The impact of each loss terms. (a) An input center frame.
(b-d) The reconstructed frames with: (b) L1 loss, (c) L1 +Lgrad.

loss (d) L1++Lgrad.+LSSIM loss (e) Ground truth frame. Best
viewed when zoomed-in.

results with four different input frame values. We observe an 606

overall tendency of better performances with larger number of 607

input frames, while the value of 5 gives the base results. This 608

indicates that having a proper temporal view range is crucial for 609

our target task. 610

5.1.7 Model Inference Time 611

Our BVDNet has a total of 23 layers and 10.5M parameters. Our 612

model is implemented on Pytorch v0.3, CUDNN v6.0, CUDA 613

v8.0, and runs on the hardware with Intel(R) Xeon(R) (2.10GHz) 614

CPU and NVIDIA GTX 1080 Ti GPU. The model runs at 62.5 fps 615

on a GPU for frames of resolution 128 × 128 pixel. 616

5.1.8 Final Challenge Results 617

Quantitative results. Table 5 summarizes the top entries from 618

the leaderboard of ECCV ChaLearn 2018 Inpainting Challenge 619

Track2. We participated with our BVDNet without the recurrence 620

stream and achieved the first place on the final test phase. Our 621

full BVDNet is shown to be even stronger on the validation set 622

in Table 4, but we cannot provide the evaluation on the testing set 623

because the test server is closed. 624

Qualitative results. We visualize the learned feature maps of 625

our BVDNet in Figure 6. We observe a hierarchical attention 626

where the encoder features are highly activated on the surrounding 627

pixels, while the decoder features are more attending to the 628

corrupted regions. We visualize the learned feature maps of our 629

BVDNet in Figure 6. We observe a hierarchical attention where 630
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Fig. 5: The impact of recurrence on temporal consistency. For
each sample, we visualize four consecutive input frames in the top
row. In the bottom rows are the zoomed-in views of our results
without recurrence (2nd row), with recurrence (3rd row), and the
ground truth frames (4th row). Without the recurrence, the change
in the subtitles leads to temporally flickering artifacts (a)

(a) input (b) E-1/2

(c) E-1/4 (d) D-1/4 (e) D-1/2 (f) output

Fig. 6: Visualization of learned feature activation. E and
D denote the encoder and decoder layers, respectively. For the
visualization, we average each feature maps along the channel
axis, and up-sample to 128 × 128 pixel. The fractional numbers
denote the spatial resolutions. We observe hierarchical attention
operations across layers. In the early encoder layers (b, c), low-
level features such as background textures ( e.g.around the subti-
tles) are aggregated along the time dimension. The latter decoder
layers (d, e) then gradually focus on the exact target regions.

the encoder features are highly activated on the surrounding pixels,631

while the decoder features are more attending to the corrupted632

regions.633

Figure 7 shows several examples of our decaptioning results.634

Our full model successfully recovers the fine details and textures635

with smooth temporal transition, even when there are active object636

movements, e.g. Figure 7-(a), or heavy illumination changes,637

e.g. Figure 7-(b). When there are texts in a video as the content638

MSE PSNR DSSIM
stephane 0.0022 30.1856 0.0613
hcilab 0.0012 33.0228 0.0424
anubhap93 0.0012 32.0021 0.0499
arnavkj95 0.0012 32.1713 0.0482

BVDNet-Exp 6 0.0011 33.3527 0.0404

TABLE 5: Final performances of the top entries in the ECCV
ChaLearn 2018 LAP Inpainting Challenge Track2 test phase. We
note that stephane’s is the baseline from the organizers [44].

themselves, e.g. Figure 7-(c), our model is trained to separate 639

between the overlaid captions and the ones coming from the video; 640

This is an intended action since the video content itself should 641

be preserved. In the future, we can construct synthetic training 642

data to nearly unlimited amount to include more various real- 643

world captions. More qualitative video results can be found in the 644

supplementary materials. 645

5.1.9 User study on video caption removal results 646

As both quantitative and qualitative studies have their limitations 647

in evaluating image / video quality, we conduct a user study to see 648

the human preferences between our video results and the ground 649

truth using 25 randomly selected videos. We exclude the videos 650

containing solid shadow regions. In each comparison, we show 651

the input video, our result, and the ground truth. The display 652

order of our result and the ground truth is randomly shuffled. Each 653

participant is asked to choose a preferred video or equally good. 654

A total of 30 participants aged from 25 to 35 participated in this 655

study. The user study results are summarized in Figure 8. In order 656

to provide the statistical significance, we conduct F-test and T- 657

test on our survey result. F-test gives a two-tailed p-value of 0.21, 658

making us assume the equal variances. Then, on the assumption 659

that the mean preference between ours and the ground truth is the 660

same (null hypothesis), we obtain a two-tailed p-value of 0.83, 661

which fails to reject the null hypothesis. This implies that the 662

human preference between our video results and the ground truth 663

are statistically similar. 664

5.1.10 Limitation 665

We observe that the results are relatively blurry when the input 666

frames have solid shadow regions, as in Figure 7-(d). This is 667

because these shadows completely occlude the background pixels 668

and make larger holes. Not only the given training set lacks the 669

amount of samples with such large holes (solid shadows), but also 670

the feature aggregation of our BVDNet relies largely on implicit 671

3D conv operations, so it is not enough to estimate the motion 672

behind the large holes. 673

5.2 VINet Results on Video Object Removal 674

In this section, we visualize the learned temporal aggregation 675

mechanism and show the effectiveness of aggregation and recur- 676

rence pathways. 677

Baselines. We compare our approach to state-of-the-art base- 678

lines in three representative streams of study: deep image inpaint- 679

ing [5], deep video inpainting [9], and optimization based video 680

inpainting [8]. 681

• Yu et al. [5]: A feed-forward CNN based method, which is 682

designed for single image inpainting. We processes videos 683
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(a) (b)

(c) (d)

Fig. 7: Qualitative decaptioning results. For each example, the top rows are the input sequences and the bottom rows are the
decaptioning results using our full model. For visualization, we determine the time interval between the frames to be 0.1 seconds. Our
model performs well on various types of subtitles with complex background variations and also is able to separate the non-caption texts
in a video.

Fig. 8: User study on our BVDNet results vs. ground truth.

frame-by-frame without using any temporal information.684

We run their official test codes.685

• Wang et al. [9]: A feed-forward CNN based method for686

video inpainting, CombCN, which consists of a temporal687

structure inference network, and a spatial detail recovering688

network. We re-implemented CombCN [9], since their689

code is not publicly available.690

• Huang et al. [8]: An optimization-based video completion691

method, which jointly estimates global flow and color. It692

requires on-the-fly optical flow computation and is ex-693

tremely time-consuming. We run their official test codes.694

5.2.1 Visualization of Learned Feature Composition695

Figure 9 shows that the proposed VINet explicitly borrows visible696

neighbor features to synthesize the missing content. For the697

visualization, we use the VINet of the first training stage and plot698

the learned feature flow from the four reference streams (without 699

the recurrent feedback) to the target stream, at 128 × 128 pixel 700

resolution. We observe that even with a large and complex hole 701

in the target frame, VINet is able to align the reference feature 702

maps with respect to the target, and integrate them to fill in 703

the hole. Even without explicit flow supervision, our flow sub- 704

networks are able to warp the feature points in visible regions 705

while shrinking the unhelpful zero features in masked regions. 706

Moreover, these potential hints are adjusted according to the 707

spatio-temporal context, rather than copied-and-pasted in a fixed 708

manner. One example is shown in Figure 9-(b) where the eyes of 709

the hamster are synthesized half-closed. 710

5.2.2 Improvement on Temporal Consistency 711

We first provide self-comparison which shows the temporal con- 712

sistency of the video results before and after using the recurrence 713

stream. Also, to validate the competitiveness of our method, 714

we compare with the three representative baseline methods [5], 715

[8], [9]. To provide the quantitative evaluation, we measure flow 716

warping errors [32] using the Sintel dataset [45] which contains 717

ground truth optical flows between video frames. We use the 718

foreground object masks in the DAVIS video dataset [40], [41] 719

as our inpainting mask sequences. We take 32 frames each from 720

21 videos in Sintel to constitute our inputs and experiment for five 721

trials. For each trial, we randomly select 21 videos of length 32+ 722

from DAVIS to create corresponding mask sequences and keep 723

them unchanged for all the methods. 724

In Table 6, we report the flow warping errors averaged over the 725

videos and trials. It shows that our full model outperforms other 726

baselines by large margins. Understandably, Yu et al.’s method 727
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(a)

(b)

Fig. 9: Visualization of the learned feature composition. Input
frames are on the odd rows, and corresponding feature flows
referential to the middle stream, and the inpainting results are
on the even rows. VINet successfully aligns and integrates the
reference features onto the target frame to fill in the large and
complex hole region.

turns out to be the least temporally consistent. CombCN [9]728

improves over the single image inpainting [5] in this metric, but729

falls behind all the other video based methods, and their video730

results still show considerable flicker artifacts. Surprisingly, even731

the global (heavy) optimization method [8] performs marginally732

better than our 1st-stage method and has a much larger error than733

our full model.734

Note that the error of our full model is reduced by a factor735

of 10 after adding the recurrent feedback, implying that it signifi-736

cantly improves the temporal stability.737

5.2.3 Spatio-Temporal Video Quality738

Wang et al. [33] proposed a video version of the inception score739

(FID) to quantitatively evaluate the quality of video generation.740

We take this metric to evaluate the quality of video inpainting as741

it measures the spatio-temporal quality in a perceptual level. As742

in [33], we follow the protocol that uses the I3D network [46]743

pretrained on a video recognition task to measure the distance744

between the spatio-temporal features extracted from the output745

videos and the ground truth videos.746

For this experiment, we take 20 videos in the DAVIS dataset.747

For each video, we ensure to choose a different video out of the748

other 19 videos to make a mask sequence, so that we have the749

setting where our algorithm is supposed to recover the original750

videos rather than remove any parts. We use the first 64 frames for751

both input and mask videos. We run five trials as in Section 5.2.2752

and average the FID scores over the videos and trials. Table 7753

summarizes the results. Our method has the smallest FID among754

the optimization based and all the learning based methods. This755

implies that our method achieves both better visual quality and756

temporal consistency.757

DAVIS masks on Sintel frames
Frame-by-frame [5] 0.00369
CombCN [9] 0.00216
Optimization [8] 0.00161
VINet (agg. only) 0.00156
VINet (agg. + rec.) 0.00148

TABLE 6: Flow warping errors. We evaluate the flow warping
errors on the Sintel dataset using 21 videos and ground truth flows.

DAVIS masks on DAVIS frames
Frame-by-frame [5] 0.00798
CombCN [9] 0.01403
Optimization [8] 0.00533
VINet (agg. only) 0.00727
VINet (agg. + rec.) 0.00467

TABLE 7: FID scores. We evaluate the FID scores on the DAVIS
dataset using 20 videos.

5.2.4 User Study on Video Object Removal 758

We apply our approach to remove dynamically moving objects 759

in videos. We use 24 videos from the DAVIS dataset [40], [41] 760

of which the names are listed in Figure 11. Examples of our 761

results are in Figure 12. We perform a human subjective test 762

for evaluating the visual quality of inpainted videos. We compare 763

our method with the strong optimization baseline [8] which is 764

specifically aimed for the video completion task. 765

In each testing case, we show the original input video, our 766

removal result and the result of Huang et al.on the same screen. 767

The order of the two removal video results is shuffled. To ensure 768

that a user has enough time to distinguish the difference and make 769

a careful judge, we play all the video results once at the original 770

speed and then once at 0.5× speed. Also, a user is allowed to 771

watch videos multiple times. Each participant is asked to choose 772

a preferred result or tie. A total of 30 users participated in this 773

study. We specifically ask each participant to check for both 774

image quality and temporal consistency. The user study results are 775

summarized in Figure 11. To provide the statistical significance, 776

we conduct F-test and T-test on our survey results. F-test gives a 777

two-tailed p-value of 0.08, making us assume the equal variances. 778

Then, on the assumption that the mean preference between ours 779

(µ=22) and the optimization method [8] (µ=18.7) is statistically 780

same (null hypothesis), we obtain a two-tailed p-value of 0.11 781

in T-test, which fails to reject the null hypothesis, i.e., the null 782

hypothesis holds. This supports our argument that both methods 783

show comparable performances. 784

In terms of visual quality, there are certain cases where the 785

proposed method is advantageous over its competitor [8]. As 786

shown in Figure 10, the optimization method is vulnerable 787

to fast object motion (rallye) and camera movement (car-turn) 788

which lead to inaccurate optical flow between frames, while our 789

learned semantics and recurrence are able to refine such errors. 790

The complete video results can be found in the supplementary 791

materials. 792

5.2.5 Extension to Higher Resolution Videos 793

Since our VINet is designed to be fully convolutional, we can 794

simply feed higher resolution frames at testing. However, to better 795

perform feature alignment and pixel reconstruction, we finetune 796
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(a) rallye (b) car-turn

Fig. 10: Comparison with state-of-the-art methods. Input video with mask boundaries in red (row-1). Video inpainting by frame-
by-frame image inpainting [5] (row-2), CombCN [9] (row-3), optimization-based method [8] (row-4), and the results by our VINet
(row-5). Best viewed when zoomed-in.

Fig. 11: User study on results of VINet vs. optimization
method [8].

the VINet on high resolution (512 × 512) pixels frames with797

the doubled stride value in the first encoder layer and the last798

decoder layer. The complete video results can be found in the799

supplementary materials.800

5.2.6 Limitation and Future Work801

We observe color saturation artifacts when there is a large and long802

occlusion in a video. The discrepancy error of the synthesized803

color propagates over time, causing inaccurate warping. The804

regions that have not been revealed in the temporal radius is805

synthesized blurry. One possible way to resolve these issues is806

integrating recently proposed techniques such as multi-stage flow807

inpainting [47] or Temporal PatchGAN loss [48].808

For the future work, we would like to further improve the809

feature aggregation part to ensure even larger temporal-window810

size [49]. Another interesting direction is to allow user interven-811

tion by training the model with additional user inputs such as812

referral expressions [50] or scribbles [51], which would be useful 813

for video editing. 814

6 CONCLUSION 815

In this paper, we propose a novel framework for video inpainting 816

based on two guiding principles: aggregating temporal informa- 817

tion and recurrently connecting past predictions for temporally 818

coherent generation. Building upon these principles, we present 819

two network designs for two video inpainting tasks. First, we 820

focus on a blind video decaptioning task, and our proposed 821

BVDNet automatically removes text overlays in videos without 822

any mask information. Second, we extend our framework to 823

handle a more general video inpainting scenario: video foreground 824

object removal. Our proposed VINet deals with arbitrary and 825

large holes indicated by object-level input masks. Our extensive 826

experiments demonstrate that both BVDNet and VINet achieve 827

significantly better visual quality than the per-frame deep CNN 828

based competitors. Our BVDNet is ranked in the first place in 829

the ECCV Chalearn 2018 LAP Inpainting Challenge - Video 830

decaptioning. Furthermore, we show that our VINet performs 831

similarly to an optimization method. Despite some limitations, we 832

argue that a well-posed feed-forward network has a great potential 833

to avoid computation-heavy methods and to boost its applicability 834

in many related vision tasks. 835
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