
Noname manuscript No.
(will be inserted by the editor)

A Simple and Light-weight Attention Module for Convolutional
Neural Networks

Jongchan Park* · Sanghyun Woo* · Joon-Young Lee · In So Kweon

Received: date / Accepted: date

Abstract Many aspects of deep neural networks, such

as depth, width, or cardinality, have been studied to

strengthen the representational power. In this work, we

study the effect of attention in convolutional neural net-

works and present our idea in a simple self-contained

module, called Bottleneck Attention Module (BAM).

Given an intermediate feature map, BAM efficiently

produces the attention map along two factorized axes,

channel and spatial, with negligible overheads. BAM is

placed at bottlenecks of various models where the down-

sampling of feature maps occurs, and is jointly trained

in an end-to-end manner. Ablation studies and exten-

sive experiments are conducted in CIFAR-100/ImageNet

classification, VOC2007/MS-COCO detection, super res-

olution and scene parsing with various architectures in-

cluding mobile-oriented networks. BAM shows consis-
tent improvements over all experiments, demonstrating

the wide applicability of BAM. The code and models

are publicly available.

Keywords attention mechanism · deep learning

Jongchan Park
Lunit, 175 Yeoksam-Ro, Gangnam-Gu, Seoul, Korea
Tel.: +82 2-21382702
E-mail: jcpark@lunit.io

Sanghyun Woo and In So Kweon
#211, N1, KAIST, Yuseong-Gu, Daejeon, Korea
Tel.: +82-42-350-5465
E-mail: {shwoo93,iskweon77}@kaist.ac.kr

Joon-Young Lee
Adobe Research, 345 Park Ave, San Jose, CA 95110
Tel.: +1 408-536-5928
E-mail: jolee@adobe.com

* Both authors have equally contributed.

1 Introduction

Deep learning has been a powerful tool for a series

of pattern recognition applications including classifi-

cation, detection, segmentation and control problems.

Due to its data-driven nature and availability of large

scale parallel computing, deep neural networks achieve

state-of-the-art results in most areas. Researchers have

done many efforts to boost the performance in vari-

ous ways such as designing optimizers (Zeiler, 2012;

Kingma and Ba, 2014), proposing adversarial training

scheme (Goodfellow et al., 2014), or task-specific meta

architecture such as 2-stage architectures (Ren et al.,

2015) for object detection.

However, fundamental approach to boost perfor-

mance is to design a good backbone architecture.
Since the very first large-scale deep neural network

AlexNet (Krizhevsky et al., 2012), various backbone ar-

chitectures such as VGGNet (Simonyan and Zisserman,

2015), GoogLeNet (Szegedy et al., 2015), ResNet (He

et al., 2016b), DenseNet (Huang et al., 2017), have been

proposed. All those have their own design choices, and

shown significant performance boosts over the prece-

dent architectures.

The most intuitive way to boost the network per-

formance is to stack more layers. Deep neural networks

then are able to approximate high-dimensional function

using their deep layers. The philosophy of VGGNet (Si-

monyan and Zisserman, 2015) and ResNet (He et al.,

2016a) precisely follows this. Compared to AlexNet,

VGGNet has twice more layers. Furthermore, ResNet

has 22x more layers than VGGNet with improved gradi-

ent flow by adopting residual connections. GoogLeNet

(Szegedy et al., 2015), which is also very deep, uses

concatenation of features with various filter sizes at

each convolutional block. The use of diverse features



2 Jongchan Park* et al.

Co
nv

Bl
oc

k

Co
nv

Bl
oc

k

Po
ol

in
g

BAM

Co
nv

Bl
oc

k

Co
nv

Bl
oc

k

Stage 1 Stage 2

Po
ol

in
g

BAM

Co
nv

Bl
oc

k

Co
nv

Bl
oc

k

Stage 3

Po
ol

in
g

BAM

Co
nv

Bl
oc

k

Co
nv

Bl
oc

k

Stage 4

Hierarchical 
attention maps

Input

Drake
Humming bird
Beagle
Strawberry
Television
Egyptian cat
…

Intermediate 
feature maps

Fig. 1: BAM integrated with a general CNN architecture. As illustrated, BAM is placed at every bottleneck

of the network. Interestingly, we observe sequential BAMs construct hierarchical attention maps which is similar

to the human perception procedure. BAM denoises low-level features such as background texture features at the

early stage. BAM then gradually focuses on the exact target which is a high-level semantic. More visualizations
and analysis are included in Fig. 5, Fig. 6.

at the same layer shows increased performance, re-

sulting in powerful representation. DenseNet (Huang

et al., 2017) also uses the concatenation of diverse

feature maps, but the features are from different lay-

ers. In other words, outputs of convolutional layers

are iteratively concatenated upon the input feature

maps. WideResNet (Zagoruyko and Komodakis, 2016)

shows that using more channels, wider convolutions,

can achieve higher performance than naively deepening

the networks. Similarly, PyramidNet (Han et al., 2017)

shows that increasing channels in deeper layers can

effectively boost the performance. Recent approaches

with grouped convolutions, such as ResNeXt (Xie et al.,

2017) or Xception (Chollet, 2017), show state-of-the-art

performances as backbone architectures. The success

of ResNeXt and Xception comes from the convolutions

with higher cardinality which can achieve high perfor-

mance effectively. Besides, a practical line of research

is to find mobile-oriented, computationally effective ar-

chitectures. MobileNet (Howard et al., 2017), sharing

a similar philosophy with ResNeXt and Xception, use

depthwise convolutions with high cardinalities.

Apart from the previous approaches, we investigate

the effect of attention in DNNs, and propose a sim-

ple, light-weight module for general DNNs. That is,

the proposed module is designed for easy integration

with existing CNN architectures. Attention mechanism

in deep neural networks has been investigated in many

previous works (Mnih et al., 2014; Ba et al., 2015; Bah-

danau et al., 2014; Xu et al., 2015; Gregor et al., 2015;

Jaderberg et al., 2015a). While most of the previous

works use attention with task-specific purposes, we ex-

plicitly investigate the use of attention as a way to im-

prove network’s representational power in an extremely

efficient way. As a result, we propose “Bottleneck At-

tention Module” (BAM), a simple and efficient atten-

tion module that can be used in any CNNs. Given a

3D feature map, BAM produces a 3D attention map

to emphasize important elements. In BAM, we decom-

pose the process of inferring a 3D attention map in two

streams (Fig. 2), so that the computational and para-

metric overhead are significantly reduced. As the chan-

nels of feature maps can be regarded as feature detec-

tors, the two branches (spatial and channel) explicitly

learn ‘what’ and ‘where’ to focus on.

We test the efficacy of BAM with various baseline

architectures on various tasks. On the CIFAR-100 and

ImageNet classification tasks, we observe performance

improvements over baseline networks by placing BAM.

Interestingly, we have observed that multiple BAMs lo-

cated at different bottlenecks build a hierarchical atten-

tion as shown in Fig. 1. We validate the performance

improvement of object detection on the VOC 2007 and

MS COCO datasets. We further apply bam to the

pixel-level prediction tasks; super resolution and scene

parsing and show consistent performance improvement

over the baselines, demonstrating a wide applicability

of BAM. Since we have carefully designed our module

to be light-weight, parameter and computational over-

heads are negligible.

In short, we investigate the effect of attention with

the proposed module BAM. BAM is a simple self-

contained module to be inserted at any feed-forward

convolutional neural networks without bells and whis-



A Simple and Light-weight Attention Module for Convolutional Neural Networks 3

tles. We extensively validate several design choices via

ablation studies, and demonstrate the effectiveness of

BAM in various vision tasks including classification,

detection, segmentation, and super resolution. More-

over, we analyze and explain the difference between the

baseline and the BAM-integrated network in terms of

class-selectivity index (Morcos et al., 2018). Finally, we

analyze the effect of attention with visualizations.

2 Related Works

A number of studies (Itti et al., 1998; Rensink, 2000;

Corbetta and Shulman, 2002) have shown that atten-

tion plays an important role in human perception. For

example, the resolution at the foveal center of human

eyes is higher than surrounding areas (Hirsch and Cur-

cio, 1989). In order to efficiently and adaptively pro-

cess visual information, human visual systems itera-

tively process spatial glimpses and focus on salient ar-

eas (Larochelle and Hinton, 2010).

Cross-modal attention. Attention mechanism is a

widely-used technique in multi-modal settings, espe-

cially when certain modalities should be conditioned on

the other modalities. Visual question answering (VQA)

task is a well-known example for such tasks. Given an

image and natural language question, the task is to

predict an answer such as counting the number, infer-

ring the position or the attributes of the targets. VQA

task can be seen as a set of dynamically changing tasks

where the provided image should be processed accord-

ing to the given question. Attention mechanism softly

chooses the task(question)-relevant aspects in the im-

age features. As suggested in (Yang et al., 2016), at-

tention maps for the image features are produced from

the given question, and it act as queries to retrieve

question-relevant features. The final answer is classified

with the stacked images features. Another way of doing

this is to use bi-directional inferring, producing atten-

tion maps for both text and images, as suggested in

(Nam et al., 2017). In such literatures, attention maps

are used as an effective way to solve tasks in a condi-

tional fashion, but they are trained in separate stages

for task-specific purposes.

Self-attention. There have been various approaches

to integrate attention in DNNs, jointly training the fea-

ture extraction and attention generation in an end-to-

end manner. A few attempts (Wang et al., 2017; Hu

et al., 2018b,a) have been made to consider attention

as an effective solution for general classification task.

Wang et al. have proposed Residual Attention Networks

which use a hour-glass module to generate 3D atten-

tion maps for intermediate features. Even the architec-

ture is resistant to noisy labels due to generated at-

tention maps, the computational/parameter overhead

is large because of the heavy 3D map generation pro-

cess. Hu et al. have proposed a compact ‘Squeeze-and-

Excitation’ module to exploit the inter-channel rela-

tionships. Although it is not explicitly stated in the

paper, it can be regarded as an attention mechanism

applied upon channel axis. Recently, the Gather-Excite

framework by Hu et al. (2018a) further improved this

approach by replacing the global average pooling with

depth-wise convolution, enhancing a gathering opera-

tion in the attention module. However, the method still

misses the spatial axis, which is also an important fac-

tor in inferring accurate attention map.

SCA-CNN (Chen et al., 2017b) and HANet (Li

et al., 2018) have shown that using both the spatial and

the channel attention is effective for image captioning

and person re-identification tasks respectively. Here, we

carefully design a module that outputs both the spatial

and the channel attention maps for image classification

tasks. Our method greatly reduces the heavy computa-

tion of 3D attention map inference (Wang et al., 2017)

and improves the baseline significantly. We also investi-

gate the effective point to place the module that is be-

fore the pooling occurs (see Fig. 1). Recently proposed

CBAM method (Woo et al., 2018b) is an extended ver-

sion of BAM. It improves on BAM with their module

design and placement (i.e., the modules are placed at

every convolution block). However, it introduces much

more parameter overhead than BAM.

Adaptive modules. Several previous works use adap-

tive modules that dynamically changes their output ac-

cording to their inputs. Dynamic Filter Network (Jia

et al., 2016) proposes to generate convolutional fea-

tures based on the input features for flexibility. Spatial

Transformer Network (Jaderberg et al., 2015b) adap-

tively generates hyper-parameters of affine transforma-

tions using input feature so that target area feature

maps are well aligned finally. This can be seen as a hard

attention upon the feature maps. Deformable Convolu-

tional Network (Dai et al., 2017) uses deformable convo-

lution where pooling offsets are dynamically generated

from input features, so that only the relevant features

are pooled for convolutions. Similar to the above ap-

proaches, BAM is also a self-contained adaptive module

that dynamically suppress or emphasize feature maps

through attention mechanism.

In this work, we exploit both channel and spatial

axes of attention with a simple and light-weight design.

Furthermore, we find an efficient location to put our

module - bottleneck of the network.



4 Jongchan Park* et al.

Global avg pool

1x1 
conv

3x3 
conv

FC FC

1x1 
conv

BAM attention
M(F)

X 2

with dilation value d
Input 
tensor

F

Spatial attention
Ms(F)

Channel attention
Mc(F)

∈ 𝑹𝑹𝟏𝟏×𝑯𝑯×𝑾𝑾

∈ 𝑹𝑹𝑪𝑪×𝟏𝟏×𝟏𝟏

Channel=𝐶𝐶
𝑟𝑟

Channel=𝐶𝐶
𝑟𝑟

Fig. 2: Detailed module architecture. Given the intermediate feature map F, the module computes corre-

sponding attention map M(F) through the two separate attention branches – channel Mc and spatial Ms. Two

intermediate tensors from channel and spatial branches are properly broadcasted to match the final tensor shape.t

We have two hyper-parameters for the module: dilation value (d) and reduction ratio (r). The dilation value deter-

mines the size of receptive fields which is helpful for the contextual information aggregation at the spatial branch.

The reduction ratio controls the capacity and overhead in both attention branches. Through the experimental

validation (see Sec. 5.1), we set {d = 4, r = 16}.

3 Bottleneck Attention Module

We design a module that learns spatial (where) and

channel-wise (what) attention separately. The intuition

behind the factorization is that those two attentions

have different properties. Thus, separation can make

them focus on their own objectives more clearly.

It is well known that each channel of the feature

maps corresponds to a certain visual pattern (Simon

and Rodner, 2015; Zhang et al., 2016). Therefore, esti-

mating and applying the channel-wise attention can be

viewed as a process of picking up the necessary semantic

attributes for the target task. The spatial attention, on

the other hand, attempts to select the important spa-

tial locations rather than considering each image region

equally. Thus, it can be seen as a clutter removal that is

quite different from the channel-attention. Therefore, it

is obvious that using these two complementary atten-

tions in combination is crucial for many classification

tasks, and we empirically confirm that it provides the

best result in Table 1b.

We implement the attention map generation of each

branch to be highly efficient. For the channel attention,

we squeeze the spatial axis using global average pooling.

We then regress the channel attention using two fully

connected layers. For the spatial attention, we gradually

reduce the channel dimension to be 1 at the final. Here,

we adopt the atrous convolution to enlarge the receptive

field and effectively decide spatially important part.

The overall structure of BAM is illustrated in Fig. 2.

For the given input feature map F ∈ RC×H×W , BAM

infers a 3D attention map M(F) ∈ RC×H×W . The re-

fined feature map F′ is computed as:

F′ = F + F⊗M(F), (1)

where ⊗ denotes element-wise multiplication. We adopt

a residual learning scheme along with the attention

mechanism to facilitate the gradient flow. To design

an efficient yet powerful module, we first compute the

channel attention Mc(F) ∈ RC and the spatial atten-

tion Ms(F) ∈ RH×W at two separate branches, then

compute the attention map M(F) as:

M(F) = σ(Mc(F) + Ms(F)), (2)

where σ is a sigmoid function. Both branch outputs are

resized to RC×H×W before addition.

Channel attention branch. As each channel contains a

specific feature response, we exploit the inter-channel

relationship in the channel branch. To aggregate the

feature map in each channel, we take global average

pooling on the feature map F and produce a channel

vector Fc ∈ RC . This vector softly encodes global in-

formation in each channel. To estimate attention across

channels from the channel vector Fc, we use a multi-

layer perceptron (MLP) with one hidden layer. To save

a parameter overhead, the hidden activation size is

set to RC/r, where r is the reduction ratio. After the

MLP, we add a batch normalization (BN) layer (Ioffe



A Simple and Light-weight Attention Module for Convolutional Neural Networks 5

and Szegedy, 2015) to adjust the scale with the spa-

tial branch output. In short, the channel attention is

computed as:

Mc(F) = BN(MLP (AvgPool(F)))

= BN(W1(W0AvgPool(F) + b0) + b1),
(3)

where W0 ∈ RC/r×C , b0 ∈ RC/r, W1 ∈ RC×C/r, b1 ∈
RC .

Spatial attention branch. The spatial branch produces

a spatial attention map Ms(F) ∈ RH×W to emphasize

or suppress features in different spatial locations. It is

widely known that (Yu and Koltun, 2016; Long et al.,

2015; Bell et al., 2016; Hariharan et al., 2015) utilizing

contextual information is crucial to know which spatial

locations should be focused on. It is important to have a

large receptive field to effectively leverage contextual in-

formation. We employ the dilated convolution (Yu and

Koltun, 2016) to enlarge the receptive fields with high

efficiency. We observe that the dilated convolution fa-

cilitates constructing a more effective spatial map than

the standard convolution (see Sec. 5.1). The “bottle-

neck structure” suggested by ResNet (He et al., 2016a)

is adopted in our spatial branch, which saves both

the number of parameters and computational overhead.

Specifically, the feature F ∈ RC×H×W is projected into

a reduced dimension RC/r×H×W using 1×1 convolution

to integrate and compress the feature map across the

channel dimension. We use the same reduction ratio r

with the channel branch for simplicity. After the reduc-

tion, two 3×3 dilated convolutions are applied to utilize

contextual information effectively. Finally, the features

are again reduced to R1×H×W spatial attention map

using 1×1 convolution. For a scale adjustment, a batch

normalization layer is applied at the end of the spatial

branch. In short, the spatial attention is computed as:

Ms(F) = BN(f1×13 (f3×32 (f3×31 (f1×10 (F))))), (4)

where f denotes a convolution operation, BN denotes

a batch normalization operation, and the superscripts

denote the convolutional filter sizes. There are two 1×1

convolutions for channel reduction The intermediate

3×3 dilated convolutions are applied to aggregate con-

textual information with a larger receptive field.

Combine two attention branches. After acquiring the

channel attention Mc(F) and the spatial attention

Ms(F) from two attention branches, we combine them

to produce our final 3D attention map M(F). Since

the two attention maps have different shapes, we ex-

pand the attention maps to RC×H×W before combin-

ing them. Among various combining methods, such as

element-wise summation, multiplication, or max oper-

ation, we choose element-wise summation for efficient

gradient flow (He et al., 2016a). We empirically verify

that element-wise summation results in the best per-

formance among three options (see Sec. 5). After the

summation, we take a sigmoid function to obtain the

final 3D attention map M(F) in the range from 0 to

1. This 3D attention map is element-wisely multiplied

with the input feature map F then is added upon the

original input feature map to acquire the refined feature

map F′ as Eq. (1).

Module placement. As BAM is a self-contained mod-

ule, it can be placed at any point of the network.

Through ablation experiments in Table 2, we empiri-

cally found that the best location for BAM is the bot-

tlenecks (i.e. right before spatial pooling).

4 Benefits of Using Self-Attention

The two main advantages of using self-attention mecha-

nism in the CNN are: 1) efficient global context model-

ing, and 2) effective back-propagation (i.e., model train-

ing).

The global context allows the model to better rec-

ognize patterns that would be locally ambiguous and

to attend on important parts. Therefore, capturing and

utilizing the global context is crucial for various vision

tasks. In this respect, CNN models typically stack many

convolution layers or use pooling operations to ensure

the features to have a large receptive field. Although do-

ing so provides the model to equip with the global view

at the end, there are several drawbacks. First, naively

stacking the convolution layers significantly increases

the space (i.e., parameters) and time (i.e., computa-

tional overheads) complexities. Second, the features at

lower layers still have limited receptive fields. On the

other hand, our proposed method BAM alleviates the

above issues nicely. Specifically, a small meta-network

(or module) is designed to refine the input feature map

based on its global feature statistics. The module is

placed at the bottlenecks of the model, making lower

layer features to benefit from the contextual informa-

tion. The overall procedure operates in a highly effi-

cient manner thanks to the light-weight module design.

We empirically verify that using BAM is more effec-

tive than simply deepening the models (i.e., using more

convolutions) as shown in Table 1c.

Moreover, our method eases model optimization. In

particular, the predicted attention map modulates the

training signal (i.e., gradients) to focus on more im-

portant regions (Wang et al., 2017). We formulate the



6 Jongchan Park* et al.

Independent Variables Value Params Error

Dilation value (d) 1 34.61 17.24
2 34.61 16.92
4 34.61 16.71
6 34.61 16.97

Reduction ratio (r) 4 35.14 16.88
8 34.74 17.14
16 34.61 16.71
32 34.56 16.92

Base (ResNeXt29 8x64d) - 34.52 18.18

a Experiments on hyper-params

Base BAM

Channel X X X X X X
Spatial X X X X X X

σ(max(C, S)) X
σ(C ∗ S) X
σ(C) + σ(S) X
σ(C + S) X X

No identity X
Error 18.18 16.82 17.00 17.44 17.55 17.02 16.89 16.71

b Experiments on each branch

ConvBlock vs BAM Params Error

ResNet50 23.68M 21.49
+ ResBlock 25.14M 21.02
+ BAM 24.07M 20

WideResNet28 (w=8) 23.4M 20.4
+ WideResBlock 24.88M 19.51
+ BAM 23.56M 19.06

ResNeXt 8x64d 34.4M 18.18
+ ResNeXtBlock 37.3M 17.69
+ BAM 34.61M 16.71

c Experiments comparing conv
blocks and BAM.

Table 1: Ablation studies on the structure and hyper parameters of BAM in CIFAR100 benchmark. (a) includes

experiments for the optimal value for the two hyper parameters; (b) includes experiments to verify the effective of

the spatial and channel branches; (c) includes experiments to compare the effectiveness of BAM over the original

conv blocks. All the experiments are reproduced in PyTorch.

attentioning process as follows:

F′ = (1 + M(F))F(x, φ), (5)

where φ is the parameters of the feature extractor.

Then, the gradient can be computed as:

∂M(F )F(x, φ)))

∂φ
= M(F)

∂F(x, φ))

∂φ
(6)

The equation indicates that the higher the attention

value (important regions), the greater the gradient

value flows in there.

5 Experiments

In this section, we empirically verify the design choices

of BAM, and show the efficacy of BAM across archi-

tectures and tasks. We conduct extensive experiments

on the standard benchmarks: CIFAR-100 (Sec. 5.1 and

5.2), ImageNet-1K (Sec. 5.3 and 5.4) for image classifi-

cation; VOC 2007 (Sec. 5.6), MS COCO (Sec. 5.5) for

object detection; Set5 and Set14 (Sec. 5.7) for super

resolution; ADE20K (Sec. 5.8) for scene parsing.

In order to perform better apple-to-apple compar-

isons, we first reproduce all the reported performance

of networks in the PyTorch framework1 and set as our

baselines (He et al., 2016a; Zagoruyko and Komodakis,

2016; Xie et al., 2017; Huang et al., 2017). When train-

ing the baseline models (or BAM-integrated models),

we follow their training schemes (i.e., hyper-parameter

settings), if not otherwise specified. Throughout all ex-

periments, we verify that BAM outperforms all the

baselines without bells and whistles, demonstrating the

general applicability of BAM across different architec-

tures as well as different tasks.

1 https://pytorch.org/

5.1 Ablation studies on CIFAR-100

The CIFAR-100 dataset (Krizhevsky and Hinton, 2009)

consists of 60,000 32×32 color images drawn from 100

classes. The training and test sets contain 50,000 and

10,000 images respectively. We adopt a standard data

augmentation method of random cropping with 4-pixel

padding and horizontal flipping for this dataset. For

pre-processing, we normalize the data using RGB mean

values and standard deviations.

Dilation value and Reduction ratio. In Table 1a,

we perform an experiment to determine two major

hyper-parameters in our module, which are dilation

value and reduction ratio, based on the ResNet50 archi-

tecture. The dilation value determines the sizes of re-

ceptive fields in the spatial attention branch. Table 1a

shows the comparison result of four different dilation
values. We can clearly see the performance improve-

ment with larger dilation values, though it is satu-

rated at the dilation value of 4. This phenomenon can

be interpreted in terms of contextual reasoning, which

is widely exploited in dense prediction tasks (Yu and

Koltun, 2016; Long et al., 2015; Bell et al., 2016; Chen

et al., 2016; Zhu et al., 2017). Since the sequence of

dilated convolutions allows an exponential expansion

of the receptive field, it enables our module to seam-

lessly aggregate contextual information. Note that the

standard convolution (i.e. dilation value of 1) produces

the lowest accuracy, demonstrating the efficacy of a

context-prior for inferring the spatial attention map.

The reduction ratio is directly related to the number of

channels in both attention branches, which enable us

to control the capacity and overhead of our module. In

Table 1a, we compare performance with four different

reduction ratios. Interestingly, the reduction ratio of 16

achieves the best accuracy, even though the reduction

ratios of 4 and 8 have higher capacity. We conjecture



A Simple and Light-weight Attention Module for Convolutional Neural Networks 7

this result as over-fitting since the training losses con-

verged in both cases. Based on the result in Table 1a,

we set the dilation value as 4 and the reduction ratio

as 16 in the following experiments.

Separate or Combined branches. In Table 1b, we

conduct an ablation study to validate our design choice

in the module. We first remove each branch to verify

the effectiveness of utilizing both channel and spatial

attention branches. As shown in Table 1b, although

each attention branch is effective to improve perfor-

mance over the baseline, we observe significant perfor-

mance boosting when we use both branches jointly. This

shows that combining the channel and spatial branches

together play a critical role in inferring the final atten-

tion map. In fact, this design follows the similar aspect

of a human visual system, which has ‘what’ (channel)

and ‘where’ (spatial) pathways and both pathways con-

tribute to process visual information (Larochelle and

Hinton, 2010; Chen et al., 2017a).

Combining methods. We also explore four different

combining strategies: maximum-and-sigmoid, product-

and-sigmoid, sum-and-sigmoid, and sigmoid-and-sum.

Table 1b summarizes the result of them. We empir-

ically confirm that sum-and-sigmoid achieves the best

performance. In terms of the information flow, the sum-

and-sigmoid is an effective way to integrate and se-

cure the information from the previous layers. In the

forward phase, it enables the network to use the in-

formation from two complementary branches, channel

and spatial, without losing any of information. In the

backward phase, the gradient is distributed equally to

all of the inputs, leading to efficient training. Product-

and-sigmoid, which can assign a large gradient to the

small input, makes the network hard to converge, yield-

ing the inferior performance. Maximum-and-sigmoid,

which routes the gradient only to the higher input, pro-

vides a regularization effect to some extent, leading to

unstable training since our module has few parameters.

Sigmoid-and-sum still improves over the baseline, but

is worse than other combining options. The main differ-

ence with the sum-and-sigmoid lies on where we place

the sigmoid operation. Applying the sigmoid to each

branch before element-wise summation may affect the

original feature representation (i.e., restricting the fea-

ture value range between 0 and 1) and may affect the

gradient updates. Though, note that all of four differ-

ent implementations outperform the baselines. This im-

plies that utilizing both stream is important while the

best-combining strategy further boosts the final perfor-

mance.

Architecture Params GFLOPs Error

ResNet50 23.71M 1.22 21.49
ResNet50 + BAM-C 28.98M 1.37 20.88
ResNet50 + BAM 24.07M 1.25 20.00

PreResNet110 1.73M 0.245 22.22
PreResNet110 + BAM-C 2.17M 0.275 21.29
PreResNet110 + BAM 1.73M 0.246 21.96

WideResNet28 (w=8) 23.40M 3.36 20.40
WideResNet28 (w=8) + BAM-C 23.78M 3.39 20.06
WideResNet28 (w=8) + BAM 23.42M 3.37 19.06

ResNext29 8x64d 34.52M 4.99 18.18
ResNext29 8x64d + BAM-C 35.60M 5.07 18.15
ResNext29 8x64d + BAM 34.61M 5.00 16.71

Table 2: Bottleneck v.s. Inside each Convolution

Block. BAM-C denotes where the module is inserted

to each convolution block.

Identity connection. In the early stage of the train-

ing, the BAM might produce inaccurate attention map

which may negatively affect both the forward and back-

ward (i.e., back propagation) information flow. There-

fore, by introducing the residual connection, we are able

to alleviate the possibly detrimental initial behavior of

the model, easing the overall model training. Note that

the attention value now ranges from 1 to 2 instead of

0 to 1. However, the relative importance is still main-

tained. We empirically verify that residual connection

indeed is effective in Table 1b.

Comparison with placing original convblocks. It

is widely know that larger networks with more param-

eters have better performances. Although BAM intro-

duces negligible overheads, it does bring some extra lay-

ers to the networks. In this experiment, we empirically

verify that the significant improvement does not come

from the increased depth by naively adding the extra

layers to the bottlenecks. We add auxiliary convolution

blocks which have the same topology with their base-

line convolution blocks, then compare it with BAM in

Table 1c. we can obviously notice that plugging BAM

not only produces superior performance but also puts

less overhead than naively placing the extra layers. It

implies that the improvement of BAM is not merely

due to the increased depth but because of the effective

feature refinement.

Bottleneck: The efficient point to place BAM.
We empirically verify that the bottlenecks of networks

are the effective points to place our module BAM. Bot-

tleneck is where the feature downsampling occurs. For

example, pooling operations or convolutions with stride

larger than 1. Specifically, we place BAM right before

the downsampling. Recent studies on attention mecha-

nisms (Hu et al., 2018b; Wang et al., 2017) mainly focus



8 Jongchan Park* et al.

on modifications within the ‘convolution blocks’ rather

than the ‘bottlenecks’. We compare those two different

locations by using various models on CIFAR-100. In the

BAM-C (‘convolution blocks’) case, we place BAM in

every convolutional block, so there is much more over-

head. In Table 2, we can clearly observe that placing the

module at the bottleneck is effective in terms of over-

head/accuracy trade-offs. It puts much less overheads

with better accuracy in most cases except PreResNet

110 (He et al., 2016b).

5.2 Classification Results on CIFAR-100

In Table 3, we compare the performance on CIFAR-100

after placing BAM at the bottlenecks of state-of-the-art

models including (He et al., 2016a,b; Zagoruyko and

Komodakis, 2016; Xie et al., 2017; Huang et al., 2017).

Note that, while ResNet101 and ResNeXt29 16x64d

networks achieve 20.00% and 17.25% error respectively,

ResNet50 with BAM and ResNeXt29 8x64d with BAM

achieve 20.00% and 16.71% error respectively using

only half of the parameters. It suggests that our mod-

ule BAM can efficiently raise the capacity of networks

with a fewer number of network parameters. Thanks

to our light-weight design, the overall parameter and

computational overheads are trivial.

5.3 Classification Results on ImageNet-1K

The ILSVRC 2012 classification dataset (Deng et al.,

2009) consists of 1.2 million images for training and

50,000 for validation with 1,000 object classes. We

adopt the same data augmentation scheme with (He

et al., 2016a,b) for training and apply a single-crop eval-

uation with the size of 224×224 at test time. Following

(He et al., 2016a,b; Huang et al., 2016), we report classi-

fication errors on the validation set. ImageNet classifica-

tion benchmark is one of the largest and most complex

image classification benchmark, and we show the effec-

tiveness of BAM in such a general and complex task. We

use the baseline networks of ResNet (He et al., 2016a),

WideResNet (Zagoruyko and Komodakis, 2016), and

ResNeXt (Xie et al., 2017) which are used for ImageNet

classification task. More details are included in the sup-

plementary material.

As shown in Table 4, the networks with BAM out-

perform all the baselines once again, demonstrating

that BAM can generalize well on various models in the

large-scale dataset. Note that the overhead of parame-

ters and computation is negligible, which suggests that

the proposed module BAM can significantly enhance

the network capacity efficiently. Another notable thing

is that the improved performance comes from placing

only three modules overall the network.

5.4 Effectiveness of BAM with Compact Networks

The main advantage of our module is that it sig-

nificantly improves performance while putting trivial

overheads on the model/computational complexities.

To demonstrate the advantage in more practical set-

tings, we incorporate our module with compact net-

works (Howard et al., 2017; Iandola et al., 2016), which

have tight resource constraints. Compact networks are

designed for mobile and embedded systems, so the de-

sign options have computational and parametric limi-

tations.

As shown in Table 4, BAM boosts the accuracy of

all the models with little overheads. Since we do not

adopt any squeezing operation (Howard et al., 2017;

Iandola et al., 2016) on our module, we believe there is

more room to be improved in terms of efficiency.

5.5 MS COCO Object Detection

We conduct object detection on the Microsoft COCO

dataset (Lin et al., 2014). According to (Bell et al.,

2016; Liu et al., 2016), we trained our model using all

the training images as well as a subset of validation

images, holding out 5,000 examples for validation. We

adopt Faster-RCNN (Ren et al., 2015) as our detec-

tion method and ImageNet pre-trained ResNet101 (He

et al., 2016a) as a baseline network. Here we are inter-

ested in improving performance by plugging BAM to

the baseline. Because we use the same detection method

of both models, the gains can only be attributed to our

module BAM. As shown in the Table 6, we observe sig-

nificant improvements from the baseline, demonstrating

generalization performance of BAM on other recogni-

tion tasks.

In Table 5, we compute mAP over different IoU

thresholds and coco object size criteria (Lin et al.,

2014). We confirm that the performance enhancement

is not at a certain threshold but in overall. Note that the

relative improvement, which we define as accuracy im-

provement over the baseline performance, are amplified

at higher IoU thresholds, demonstrating that attention

module is effective for accurate bounding box predic-

tion. The BAM also improves the baseline model over

all the different object sizes rather than improving it at

a specific object size.



A Simple and Light-weight Attention Module for Convolutional Neural Networks 9

architecture
original re-implement with BAM
error error params GFLOPs error params GFLOPS

ResNet 50 - 21.49 23.71M 1.22 20.00 24.07M(+0.36) 1.25(+0.03)
ResNet 101 - 20.00 42.70M 2.44 19.61 43.06M(+0.36) 2.46(+0.02)
PreResNet 110 - 22.22 1.726M 0.245 21.96 1.733M(+0.007) 0.246(+0.01)
WideResNet 28 (w=8) - 20.40 23.40M 3.36 19.06 23.42M(+0.02) 3.37(+0.01)
WideResNet 28 (w=10) 18.85 18.89 36.54M 5.24 18.56 36.57M(+0.03) 5.25(+0.01)
WideResNet 40 (w=10) 18.30 18.29 55.90M 8.07 18.17 55.94M(+0.04) 8.08(+0.01)
ResNeXt 29 8x64d 17.77 18.18 34.52M 4.99 16.71 34.61M(+0.09) 5.00(+0.01)
ResNeXt 29 16x64d 17.31 17.25 68.25M 9.88 16.39 68.34M(+0.09) 9.90(+0.02)
DenseNet 100-BC (k=12) 22.27 21.95 0.8M 0.29 20.65 0.84M(+0.04) 0.30(+0.01)

Table 3: Experiments on image classification tasks: CIFAR-100 classification. The numbers inside the parentheses

indicate the parameter/computational overhead. w denotes the widening factor in WideResNet (Zagoruyko and

Komodakis, 2016) and k denotes the growth rate in DenseNet (Huang et al., 2017). For the DenseNet (Huang

et al., 2017), we put our module back and forth of the transition block.

architecture
original re-implement with BAM

top-1 err. top-5 err. top-1 top-5 params GFLOPs top-1 top-5 params GFLOPS
ResNet18 - - 29.60 10.55 11.69M 1.81 28.88 10.01 11.71M(+0.02) 1.82(+0.01)
ResNet50 24.7 7.8 24.56 7.50 25.56M 3.86 24.02 7.18 25.92M(+0.36) 3.94(+0.08)
ResNet101 23.6 7.1 23.38 6.88 44.55M 7.57 22.44 6.29 44.91M(+0.36) 7.65(+0.08)
WideResNet18 (widen=1.5) 27.06 9.0 26.85 8.88 25.88M 3.87 26.67 8.69 25.93M(+0.05) 3.88(+0.01)
WideResNet18 (widen=2.0) 25.58 8.06 25.63 8.20 45.62M 6.70 25.00 7.81 45.71M(+0.09) 6.72(+0.02)
ResNeXt50 (32x4d) 22.2 - 22.35 6.01 25.03M 3.77 21.92 5.89 25.39M(+0.36) 3.85(+0.08)
MobileNetV2 (Sandler et al., 2018) 28.0 - 28.27 9.63 3.505M 0.300 27.50 9.35 3.516M(+0.011) 0.307(+0.007)
SqueezeNet v1.1 - 19.7 40.86 18.88 1.24M 0.290 39.82 17.68 1.26M(+0.02) 0.304(+0.014)

Table 4: Experiments on image classification tasks: ImageNet 1K classification. The numbers inside the

parentheses indicate the parameter/computational overhead. w denotes the widening factor in WideRes-

Net (Zagoruyko and Komodakis, 2016). ResNet (He et al., 2016a) results are obtained from the Github page

https://github.com/Kaiminghe/deep-residual-networks. SqueezeNet v1.1 (Iandola et al., 2016) result is obtained

from the Github page https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet v1.1

Architecture mAP@0.5 @0.55 @0.60 @0.65 @0.70 @0.75 @0.80 @0.85 @0.90 @0.95 small medium large

ResNet101 48.4 45.9 43.4 40 35.7 30.7 24.1 15.6 6.5 0.59 11.5 33.2 44.3
ResNet101 + BAM 50.2 47.5 44.7 41.7 37.4 32.5 25.5 17.0 7.3 0.76 12.6 34.6 46.4
Relative improvement +3.7% +3.5% +3.0% +4.3% +4.8% +5.7% +5.8% +9.0% +12.3% +28.8% 9.6% 4.2% +4.7%

Table 5: Detailed MS COCO detection results. The small, medium, and large indicates mAP over different

IoU thresholds from 0.5 to 0.95 which are computed based on a coco object size criteria (Lin et al., 2014).

Architecture mAP@.5 mAP@.75 mAP@[.5,.95]

ResNet101 48.4 30.7 29.1
ResNet101 + BAM 50.2 32.5 30.4

* all results are reproduced in the PyTorch framework.

Table 6: MS COCO detection results. Object detec-

tion mAP(%) is reported. We adopt Faster-RCNN(Ren

et al., 2015) as our detection method and ImageNet

pre-trained ResNet101 (He et al., 2016a) as baseline

network.

5.6 VOC 2007 Object Detection

We further experiment BAM on the PASCAL VOC

2007 detection task. In this experiment, we apply BAM

BackBone Detector mAP@.5 params(M)

VGG16 SSD 77.8 26.5
VGG16 StairNet* 78.8 32.0
VGG16 StairNet 78.9 32.0
VGG16 StairNet + BAM 79.3 32.1

MobileNet SSD 68.1 5.81
MobileNet StairNet 70.1 5.98
MobileNet StairNet + BAM 70.6 6.00

* indicates the original paper performance.

Table 7: VOC2007 detection test set results. Ob-

ject detection mAP(%) is reported. We adopt Stair-

Net (Woo et al., 2018a) as our baseline.

to the detectors. We adopt the StairNet (Woo et al.,

2018a) framework, which is one of the strongest multi-



10 Jongchan Park* et al.

Architecture SET5 SET14

SRResNet 31.5548/0.8901 28.2529/0.7807
SRResNet + BAM 31.6688/0.8915 28.2827/0.7814

Table 8: Super Resolution experiments. We com-

pare the effect of BAM integrated ResNet with baseline

SRResNet model.

scale method based on the SSD (Liu et al., 2016). We

place BAM right before every classifier, refining the

final features before the prediction, enforcing model

to adaptively select only the meaningful features. The

experimental results are summarized in Table 7. We

can clearly see that BAM improves the accuracy of all

strong baselines with two backbone networks. Note that

accuracy improvement of BAM comes with a negligi-

ble parameter overhead, indicating that enhancement

is not due to a naive capacity-increment but because

of our effective feature refinement. In addition, the re-

sult using the light-weight backbone network (Howard

et al., 2017) again shows that BAM can be an interest-

ing method to low-end devices.

5.7 Super Resolution

For the classification and detection tasks, CNNs are

used to recognize single or multiple target in the given

image respectively. We further explore the applicabil-

ity of BAM in more challenging pixel-level prediction

tasks. We first apply BAM in super resolution task. We

set SRResNet (Ledig et al., 2017) as our baseline model

and place one BAM module at every 4th ResBlock to
construct SRResNet + BAM model. We perform exper-

iments on two widely used benchmark datasets: Set5

and Set14. All experiments are performed with a scale

factor of 4 between low- and high-resolution images.

This corresponds to a total 16 reduction in image pix-

els. For fair comparison, all reported PSNR [dB] and

SSIM scores were calculated on the y-channel of center-

cropped images, removing a 4-pixel wide strip from each

border. We use 2017 COCO train dataset (118k images)

for training both baseline and BAM-integrated model.

We follow the training details as given in the original

paper (Ledig et al., 2017). We confirm that PSNR and

SSIM scores of reproduced baseline match closely to the

reported values.

As we can see in Table 8, BAM improves over

the baseline performance in the super resolution task.

Please note that BAM is proposed and ablated on se-

mantic tasks, and is not optimized for pixel-level pre-

diction task, but it still shows improvement over the

baseline. We believe moderate changes to the design of

Encoder Decoder mIoU Pixel Accuracy

ResNet50 UperNet 0.3157 75.33%
ResNet50+BAM UperNet 0.3497 76.60%

Table 9: ADE20K scene parsing experiments. We

compare the effect of BAM integrated ResNet (He et al.,

2016b) encoder with UperNet (Xiao et al., 2018) de-

coder. Single scale evaluation results are reported.

Fig. 3: Qualitative evaluation on ADE20K valida-
tion set. Several validation examples are shown above.

Baseline is ResNet50(encoder) + UperNet, and ours is

ResNet50 & BAM + UperNet. We can see that BAM

induces the network to capture a finer object extent.

attention module can further improve the performance.

Here, we focus on showing the attention process can be

an effective solution for the pixel-level inference task.

5.8 ADE20K Scene Parsing

We now investigate the effectiveness of BAM in

ADE20K scene parsing task (Zhou et al., 2019).

We adopt a recent state-of-the-art architecture Uper-

Net (Xiao et al., 2018) and place BAM to the encoder

part. We use the official PyTorch code provided by

the authors (Zhou, Bolei and Zhao, Hang and Puig,

Xavier and Fidler, Sanja and Barriuso, Adela and Tor-



A Simple and Light-weight Attention Module for Convolutional Neural Networks 11

Architecture Params GFLOPs Error

ResNet50 23.71M 1.22 21.49
ResNet50 + SE 26.24M 1.23 20.72
ResNet50 + BAM 24.07M 1.25 20.00
PreResNet110 1.73M 0.245 22.22
PreResNet110 + SE 1.93M 0.245 21.85
PreResNet110 + BAM 1.73M 0.246 21.96
WideResNet28 (w=8) 23.40M 3.36 20.40
WideResNet28 (w=8) + SE 23.58M 3.36 19.85
WideResNet28 (w=8) + BAM 23.42M 3.37 19.06
ResNext29 16x64d 68.25M 9.88 17.25
ResNext29 16x64d + SE 68.81M 9.88 16.52
ResNext29 16x64d + BAM 68.34M 9.9 16.39

* all results are reproduced in the PyTorch framework.

Table 10: BAM v.s. SE (Hu et al., 2018b). CIFAR-

100 experiment results. Top-1 errors are reported.

ralba, Antonio, 2018). We use the encoder architecture

of ResNet50, and the decoder architecture of UperNet.

Following the default hyper-parameters (segmentation

downsampling 4, padding 32).

The experiment results are summarized in Table 9.

The results again shows that attention process is ef-

fective for pixel-level inference task. We also provide

qualitative results in Fig. 3. We can see that BAM

helps the model to capture a finer object extent such as

boundary shape, edges, and small targets. We see that

attention process enables contextual reasoning and pro-

vides strong global cue to resolve local ambiguities.

5.9 Comparison with Squeeze-and-Excitation

We conduct additional experiments to compare our

method with SE in CIFAR-100 classification task. Ta-

ble 10 summarizes all the results showing that BAM

outperforms SE in most cases with fewer parameters.

Our module requires slightly more GFLOPS but has

much less parameters than SE, as we place our module

only at the bottlenecks not every conv blocks.

6 Analysis on the Effect of BAM

We have shown that BAM can improve the performance

of a deep network for various vision tasks. Now, we pro-

vide in-depth analysis of how a BAM-integrated model

(i.e., ResNet50 + BAM) may differ from a vanilla base-

line model (i.e., ResNet50) in several aspects. We first

explore the features of these models using a class se-

lectivity index proposed by Morcos et al. (2018). Next,

we provide visualization results of the attention process

with regard to the case of when the BAM-integrated

model succeeds in classification but the baseline fails.

Finally, we investigate the channel attentions and the

spatial attentions of the BAM-integrated model.

6.1 Class-selectivity index.

Class-selectivity is a neuro-science inspired metric pro-

posed by Morcos et al. (2018). For each feature map, the

metric computes the normalized difference between the

highest class-conditional mean activity and the mean

of all other classes over a given data distribution. The

resulting value varies between zero and one, where zero

indicates that the filter produced same value for every

class (i.e., feature re-use) and one indicates that a filter

only activates for a single class. We compute the class-

selectivity index for the features generated from two

models (i.e., ResNet50 with and without BAM). The

distribution of class-selectivity is illustrated in Fig. 4.

We observe a common underlying trend in both

models: the class-selectivity increases gradually as the

stages progress. It is well known that the filters of deep

networks tend to extract class-agnostic features at the

early stage (i.e., low-level features) while class-specific

features are extracted at the last stage. In contrast to

the baseline model, at the stage 2 and 3, the distribu-

tions of class-selectivity for the BAM-integrated model

appears to be separated. We conjecture that the at-

tention module helps feature re-use within the network

and prevents allocating highly specialized units. As a

result, the sub-features of intermediate stages from the

BAM-integrated model shows less class selectivity than

the ResNet50 baseline (see Fig. 4).

6.2 Qualitative results.

In Fig. 5, we visualize our attention maps and com-

pare with the baseline feature maps for thorough anal-

ysis of accuracy improvement. We compare two mod-

els trained on ImageNet-1K: ResNet50 and ResNet50

+ BAM. We select three examples that the baseline

model fails to correctly classify while the model with

BAM succeeds. We gather all the 3D attention maps at

the bottlenecks and examine their distributions with

respect to the channel and spatial axes respectively.

For visualizing the 2D spatial attention maps, we aver-

aged attention maps over the channel axis and resized

them. All the 2D maps are normalized according to the

global statistics at each stage computed from the whole

ImageNet-1K training set. For visualizing the channel

attention profiles, we averaged our attention map over

the spatial axis and uniformly sampled 200 channels

similar to Hu et al. (2018b).



12 Jongchan Park* et al.

a Class-selectivity index at ResNet50 stage 1

b Class-selectivity index at ResNet50 stage 2

c Class-selectivity index at ResNet50 stage 3

d Class-selectivity index at ResNet50 stage 4

Fig. 4: Class-selectivity index plot of ResNet50 and

ResNet50+BAM in ImageNet.

As shown in Fig. 5, we can observe that the module

BAM drives the network to focus on the target gradu-

ally while the baseline model shows more scattered fea-

ture activations. Note that accurate targeting is impor-

tant for the fine-grained classification, as the incorrect

answers of the baseline are reasonable errors. At the

first stage, we observe high variance along the channel

axis and enhanced 2D feature maps after BAM. Since

the theoretical receptive field size at the first bottle-

neck is 35, compared to the input image size of 224,

the features contain only local information of the in-

put. Therefore, the filters of attention map at this stage

act as a local feature denoiser. We can infer that both

channel and spatial attention contributes together to se-

lectively refine local features, learning what (‘channel’)

and where (‘spatial’) to focus or suppress. The second

stage shows an intermediate characteristic of the first

and final stages. At the final stage, the module gen-

erates binary-like 2D attention maps focusing on the

target object. In terms of channel, the attention profile

shows few spikes with low variance. We conjecture that

this is because there is enough information about ‘what’

to focus at this stage. Even it is noisy, note that the fea-

tures before applying the module show high activations

around the target, indicating that the network already

has a strong clue in what to focus on. By comparing the

features of the baseline and before/after BAM, we ver-

ify that BAM accurately focuses on the target object

while the baseline features are still scattered. The visu-

alization of the overall attention process demonstrates

the efficacy of BAM, which refines the features using

two complementary attentions jointly to focus on more

meaningful information. Moreover, the stage-by-stage

gradual focusing resembles a hierarchical human per-

ception process (Hubel and Wiesel, 1959; Riesenhuber

and Poggio, 1999; Marr and Vision, 1982), suggesting

that BAM drives the network to mimic the human vi-

sual system effectively.

6.3 Visualization Results

We show more visualization results of the attention pro-

cess in Fig. 6 from ImageNet validation set. The listed

samples are correctly classified by the BAM-integrated

model ResNet50 + BAM, but incorrectly classified by

the baseline model of ResNet50. The examples are listed

with intermediate features and attention maps (aver-

aged over channel axis for visualization). Starting from

the early stage 1, we can clearly observe that the at-

tention module acts as a feature denoiser, successfully

suppressing much of the noise and highlighting on vi-

sually meaningful contents. Figures are best viewed in

color.



A Simple and Light-weight Attention Module for Convolutional Neural Networks 13

Feature 
before BAM

BAM 
attention map

Feature 
after BAMInput image Feature map

“baseball”

St
ag

e 
1

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

Stage 1
Stage 2

Stage 3

Baseline network + BAM Baseline network

“macaque”

Stage 1
Stage 2

Stage 3

BA
M

 2
BA

M
 1

BA
M

 2
BA

M
 3

St
ag

e 
1

St
ag

e 
2

St
ag

e 
3

Correct:
“baseball”

Correct:
“macaque”

Wrong:
“acorn”

Wrong:
“proboscis 
monkey”

“indigo bird”

Correct:
“indigo bird”

Wrong:
“jay bird”

St
ag

e 
1

BA
M

 1

St
ag

e 
2

BA
M

 2
BA

M
 3

St
ag

e 
3

Stage 1
Stage 2

Stage 3

Channel-wise attention

BAM 1

BAM 2

BAM 3

channel index

attention val

channel index

attention val

channel index

attention val

Fig. 5: Visualizing the attention process of BAM. In order to provide an intuitive understanding of BAM’s

role, we visualize image classification process using the images that baseline (ResNet50) fails to classify correctly

while the model with BAM succeeds. Using the models trained on ImageNet-1K, we gather all the 3D attention

maps from each bottleneck and examine their distribution spatially and channel-wise. We can clearly observe that

the module BAM successfully drives the network to focus on the target while the baseline model fails.

7 Conclusion

In this work, we propose a simple and light-weight at-

tention module, named Bottleneck Attention Module,

to improve the performance of CNNs. BAM is a self-

contained module composed of off-the-shelf CNN lay-

ers, so it can be easily implemented and added upon any

CNN architectures. Our module learns what and where

to focus or suppress efficiently through two separate

pathways and refines intermediate features effectively.

Inspired by a human visual system, we suggest plac-

ing an attention module at the bottleneck of a network

which is the most critical points of information flow,

and empirically verified it. To show its efficacy, we con-

ducted extensive experiments with various state-of-the-

art models and confirmed that BAM outperforms all

the baselines on four different types of vision tasks: clas-

sification, detection, super-resolution, and scene pars-

ing. Moreover, we analyze and visualize how the module

acts on the intermediate feature maps to get a clearer

understanding. We believe our findings of adaptive fea-

ture refinement at the bottleneck is helpful to the other

vision tasks as well.



14 Jongchan Park* et al.

Feature 
before BAM

BAM 
attention map

Feature 
after BAMInput image

Baseline network + BAM

“toy poodle”

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

BA
M

 2 Predict:
“toy 

poodle”St
ag

e 
1

“titi monkey”

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

BA
M

 2 Predict:
“titi

monkey”St
ag

e 
1

“German 
sheperd”

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

BA
M

 2 Predict:
“German 
shepherd”St

ag
e 

1

“giant 
schnauzer”

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

BA
M

 2 Predict:
“giant 

schnauzer”St
ag

e 
1

“killer whale”

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

BA
M

 2 Predict:
“killer 
whale”St

ag
e 

1

“spider 
monkey”

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

BA
M

 2 Predict:
“spider 

monkey”St
ag

e 
1

“Shetland 
sheepdog”

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

BA
M

 2 Predict:
“Shetland 
sheepdog”St

ag
e 

1

“Rhodesian 
ridgeback”

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

BA
M

 2 Predict:
“Rhodesian 
ridgeback”St

ag
e 

1

“wood 
rabbit”

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

BA
M

 2 Predict:
“wood 
rabbit”St

ag
e 

1

“American 
egret”

BA
M

 1

St
ag

e 
2

St
ag

e 
3

BA
M

 3

BA
M

 2 Predict:
“American 

egret”St
ag

e 
1

Feature 
before BAM

BAM 
attention map

Feature 
after BAM

Feature 
before BAM

BAM 
attention map

Feature 
after BAM

Fig. 6: Successful cases with BAM. The shown examples are the intermediate activations and BAM attention

maps when the baseline+BAM succeeds and the baseline fails. Figure best viewed in color.



A Simple and Light-weight Attention Module for Convolutional Neural Networks 15

References

Ba J, Mnih V, Kavukcuoglu K (2015) Multiple object

recognition with visual attention. In: Proc. of Int’l

Conf. on Learning Representations (ICLR)

Bahdanau D, Cho K, Bengio Y (2014) Neural machine

translation by jointly learning to align and translate.

arXiv preprint arXiv:14090473

Bell S, Lawrence Zitnick C, Bala K, Girshick R (2016)

Inside-outside net: Detecting objects in context with

skip pooling and recurrent neural networks. In:

Proc. of Computer Vision and Pattern Recognition

(CVPR)

Chen L, Zhang H, Xiao J, Nie L, Shao J, Chua TS

(2017a) Sca-cnn: Spatial and channel-wise attention

in convolutional networks for image captioning. In:

Proc. of Computer Vision and Pattern Recognition

(CVPR)

Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua

TS (2017b) Sca-cnn: Spatial and channel-wise atten-

tion in convolutional networks for image captioning.

In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 5659–5667

Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille

AL (2016) Deeplab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and

fully connected crfs. arXiv preprint arXiv:160600915

Chollet F (2017) Xception: Deep learning with depth-

wise separable convolutions. In: Proc. of Computer

Vision and Pattern Recognition (CVPR)

Corbetta M, Shulman GL (2002) Control of goal-

directed and stimulus-driven attention in the brain.

In: Nature reviews neuroscience 3.3

Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, Wei

Y (2017) Deformable convolutional networks. CoRR,

abs/170306211 1(2):3

Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009)

Imagenet: A large-scale hierarchical image database.

In: Proc. of Computer Vision and Pattern Recogni-

tion (CVPR)

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-

Farley D, Ozair S, Courville A, Bengio Y (2014) Gen-

erative adversarial nets. In: Advances in neural infor-

mation processing systems, pp 2672–2680

Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra

D (2015) Draw: A recurrent neural network for image

generation. In: Proc. of International Conference on

Machine Learning (ICML)

Han D, Kim J, Kim J (2017) Deep pyramidal residual

networks. In: Computer Vision and Pattern Recog-

nition (CVPR), 2017 IEEE Conference on, IEEE, pp

6307–6315

Hariharan B, Arbeláez P, Girshick R, Malik J (2015)

Hypercolumns for object segmentation and fine-

grained localization. In: Proc. of Computer Vision

and Pattern Recognition (CVPR)

He K, Zhang X, Ren S, Sun J (2016a) Deep residual

learning for image recognition. In: Proc. of Computer

Vision and Pattern Recognition (CVPR)

He K, Zhang X, Ren S, Sun J (2016b) Identity map-

pings in deep residual networks. In: Proc. of Euro-

pean Conf. on Computer Vision (ECCV)

Hirsch J, Curcio CA (1989) The spatial resolution

capacity of human foveal retina. Vision research

29(9):1095–1101

Howard AG, Zhu M, Chen B, Kalenichenko D,

Wang W, Weyand T, Andreetto M, Adam H

(2017) Mobilenets: Efficient convolutional neural net-

works for mobile vision applications. arXiv preprint

arXiv:170404861

Hu J, Shen L, Albanie S, Sun G, Vedaldi A (2018a)

Gather-excite: Exploiting feature context in convolu-

tional neural networks. In: Advances in Neural Infor-

mation Processing Systems, pp 9422–9432

Hu J, Shen L, Sun G (2018b) Squeeze-and-excitation

networks. In: Proc. of Computer Vision and Pattern

Recognition (CVPR)

Huang G, Sun Y, Liu Z, Sedra D, Weinberger

KQ (2016) Deep networks with stochastic depth.

In: Proc. of European Conf. on Computer Vision

(ECCV)

Huang G, Liu Z, Weinberger KQ, van der Maaten L

(2017) Densely connected convolutional networks. In:

Proc. of Computer Vision and Pattern Recognition

(CVPR)

Hubel DH, Wiesel TN (1959) Receptive fields of single

neurones in the cat’s striate cortex. The Journal of

physiology 148(3):574–591

Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally

WJ, Keutzer K (2016) Squeezenet: Alexnet-level ac-

curacy with 50x fewer parameters and <0.5mb model

size. arXiv preprint arXiv:160207360

Ioffe S, Szegedy C (2015) Batch normalization: Accel-

erating deep network training by reducing internal

covariate shift. In: Proc. of International Conference

on Machine Learning (ICML)

Itti L, Koch C, Niebur E (1998) A model of saliency-

based visual attention for rapid scene analysis. In:

IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)

Jaderberg M, Simonyan K, Zisserman A, et al. (2015a)

Spatial transformer networks. In: Proc. of Neural In-

formation Processing Systems (NIPS)

Jaderberg M, Simonyan K, Zisserman A, et al. (2015b)

Spatial transformer networks. In: Advances in neural

information processing systems, pp 2017–2025



16 Jongchan Park* et al.

Jia X, De Brabandere B, Tuytelaars T, Gool LV (2016)

Dynamic filter networks. In: Advances in Neural In-

formation Processing Systems, pp 667–675

Kingma DP, Ba J (2014) Adam: A method for stochas-

tic optimization. arXiv preprint arXiv:14126980

Krizhevsky A, Hinton G (2009) Learning multiple lay-

ers of features from tiny images. Technical report,

University of Toronto

Krizhevsky A, Sutskever I, Hinton GE (2012) Ima-

genet classification with deep convolutional neural

networks. In: Proc. of Neural Information Process-

ing Systems (NIPS)

Larochelle H, Hinton GE (2010) Learning to combine

foveal glimpses with a third-order boltzmann ma-

chine. In: Proc. of Neural Information Processing

Systems (NIPS)

Ledig C, Theis L, Huszár F, Caballero J, Cunningham

A, Acosta A, Aitken AP, Tejani A, Totz J, Wang

Z, et al. (2017) Photo-realistic single image super-

resolution using a generative adversarial network. In:

Proc. of Computer Vision and Pattern Recognition

(CVPR)

Li W, Zhu X, Gong S (2018) Harmonious attention net-

work for person re-identification. In: Proceedings of

the IEEE Conference on Computer Vision and Pat-

tern Recognition, pp 2285–2294

Lin TY, Maire M, Belongie S, Hays J, Perona P, Ra-

manan D, Dollár P, Zitnick CL (2014) Microsoft coco:

Common objects in context. In: Proc. of European

Conf. on Computer Vision (ECCV)

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu

CY, Berg AC (2016) Ssd: Single shot multibox detec-

tor. In: Proc. of European Conf. on Computer Vision

(ECCV)

Long J, Shelhamer E, Darrell T (2015) Fully con-

volutional networks for semantic segmentation. In:

Proc. of Computer Vision and Pattern Recognition

(CVPR)

Marr D, Vision A (1982) A computational investiga-

tion into the human representation and processing of

visual information. WH San Francisco: Freeman and

Company 1(2)

Mnih V, Heess N, Graves A, et al. (2014) Recurrent

models of visual attention.” advances in neural infor-

mation processing systems. In: Proc. of Neural Infor-

mation Processing Systems (NIPS)

Morcos AS, Barrett DG, Rabinowitz NC, Botvinick M

(2018) On the importance of single directions for gen-

eralization. In: Proc. of Int’l Conf. on Learning Rep-

resentations (ICLR)

Nam H, Ha JW, Kim J (2017) Dual attention networks

for multimodal reasoning and matching. In: Proc. of

Computer Vision and Pattern Recognition (CVPR),

pp 2156–2164

Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: To-

wards real-time object detection with region proposal

networks. In: Proc. of Neural Information Processing

Systems (NIPS)

Rensink RA (2000) The dynamic representation of

scenes. In: Visual cognition 7.1-3

Riesenhuber M, Poggio T (1999) Hierarchical models

of object recognition in cortex. Nature neuroscience

2(11):1019–1025

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen

LC (2018) Mobilenetv2: Inverted residuals and lin-

ear bottlenecks. In: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition,

pp 4510–4520

Simon M, Rodner E (2015) Neural activation constella-

tions: Unsupervised part model discovery with convo-

lutional networks. In: Proceedings of the IEEE Inter-

national Conference on Computer Vision, pp 1143–

1151

Simonyan K, Zisserman A (2015) Very deep convo-

lutional networks for large-scale image recognition.

In: Proc. of Int’l Conf. on Learning Representations

(ICLR)

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov

D, Erhan D, Vanhoucke V, Rabinovich A (2015) Go-

ing deeper with convolutions. In: Proc. of Computer

Vision and Pattern Recognition (CVPR)

Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H,

Wang X, Tang X (2017) Residual attention network

for image classification. In: Proc. of Computer Vision

and Pattern Recognition (CVPR)

Woo S, Hwang S, Kweon IS (2018a) Stairnet: Top-down

semantic aggregation for accurate one shot detection.

In: Proc. of Winter Conf. on Applications of Com-

puter Vision (WACV)

Woo S, Park J, Lee JY, Kweon IS (2018b) Cbam: Con-

volutional block attention module. In: Proc. of Euro-

pean Conf. on Computer Vision (ECCV)

Xiao T, Liu Y, Zhou B, Jiang Y, Sun J (2018) Unified

perceptual parsing for scene understanding. In: Proc.

of European Conf. on Computer Vision (ECCV)

Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggre-

gated residual transformations for deep neural net-

works. In: Proc. of Computer Vision and Pattern

Recognition (CVPR)

Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudi-

nov R, Zemel R, Bengio Y (2015) Show, attend and

tell: Neural image caption generation with visual at-

tention. In: Proc. of International Conference on Ma-

chine Learning (ICML)

Yang Z, He X, Gao J, Deng L, Smola A (2016) Stacked

attention networks for image question answering. In:



A Simple and Light-weight Attention Module for Convolutional Neural Networks 17

Proc. of Computer Vision and Pattern Recognition

(CVPR)

Yu F, Koltun V (2016) Multi-scale context aggregation

by dilated convolutions. In: Proc. of Int’l Conf. on

Learning Representations (ICLR)

Zagoruyko S, Komodakis N (2016) Wide residual net-

works. In: Proc. of British Machine Vision Conference

(BMVC)

Zeiler MD (2012) Adadelta: an adaptive learning rate

method. arXiv preprint arXiv:12125701

Zhang X, Xiong H, Zhou W, Lin W, Tian Q (2016)

Picking deep filter responses for fine-grained image

recognition. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp

1134–1142

Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba

A (2019) Semantic understanding of scenes through

the ade20k dataset. Int’l Journal of Computer Vision

(IJCV)

Zhou, Bolei and Zhao, Hang and Puig, Xavier and

Fidler, Sanja and Barriuso, Adela and Torralba,

Antonio (2018) Semantic Segmentation on MIT

ADE20K dataset in PyTorch. https://github.com/

CSAILVision/semantic-segmentation-pytorch/

Zhu Y, Zhao C, Wang J, Zhao X, Wu Y, Lu H (2017)

Couplenet: Coupling global structure with local parts

for object detection. In: Proc. of Intl Conf. on Com-

puter Vision (ICCV)


