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Abstract. We propose a unified referring video object segmentation
network (URVOS). URVOS takes a video and a referring expression
as inputs, and estimates the object masks referred by the given lan-
guage expression in the whole video frames. Our algorithm addresses
the challenging problem by performing language-based object segmen-
tation and mask propagation jointly using a single deep neural net-
work with a proper combination of two attention models. In addition,
we construct the first large-scale referring video object segmentation
dataset called Refer-Youtube-VOS. We evaluate our model on two bench-
mark datasets including ours and demonstrate the effectiveness of the
proposed approach. The dataset is released at https://github.com/

skynbe/Refer-Youtube-VOS.
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1 Introduction

Video object segmentation, which separates foreground objects from background
in a video sequence, has attracted wide attention due to its applicability to many
practical problems including video analysis and video editing. Typically, this
task has been addressed in unsupervised or semi-supervised ways. Unsupervised
techniques [31, 7] perform segmentation without the guidance for foreground
objects, and aim to estimate the object masks using salient features, independent
motions, or known class labels automatically. Due to the ambiguity and the lack
of flexibility in defining foreground objects, such approaches may be suitable for
video analysis but not for video editing that requires to segment arbitrary objects
or their parts flexibly. In the semi-supervised scenario, where the ground-truth
mask is available at least in a single frame, existing methods [2, 24, 35, 32, 29, 22]
propagate the ground-truth object mask to the rest of frames in a video. They
fit well for interactive video editing but require tedious and time-consuming
step to obtain ground-truth masks. To overcome such limitations, interactive
approaches [1, 3, 4, 21] have recently been investigated to allow user interventions
during inference.

† This work was done during an internship at Adobe Research.
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Despite great progress in semi-supervised and interactive video object seg-
mentation, pixel-level interactions are still challenging especially in mobile video
editing and augmented reality use-cases. To address the challenge, we consider
a different type of interaction, language expressions, and introduce a new task
that segments an object referred by the given language expression in a video.
We call this task as referring video object segmentation.

A näıve baseline for the task is applying referring image segmentation tech-
niques [16, 12, 37, 36] to each input frame independently. However, it does not
leverage temporal coherency of video frames and, consequently, may result in in-
consistent object mask predictions across frames. Another option is a sequential
integration of referring image segmentation and semi-supervised video object
segmentation. In this case, a referring image segmentation method initializes an
object mask at a certain frame and then a video object segmentation method
propagates the mask to the rest of the frames. This would work well if the initial-
ization is successful. However, it often overfits to the particular characteristics
in the anchor frame, which may not be robust in practice in the presence of oc-
clusions or background clutter. Recently, Khoreva et al. [10] tackle this task by
generating a set of mask proposals and choosing the most temporally-consistent
set of candidates, but such a post-selection approach has inevitable limitation
in maintaining temporal coherence.

We propose URVOS, a unified referring video object segmentation network.
URVOS is an end-to-end framework for referring video object segmentation,
which performs referring image segmentation and semi-supervised video object
segmentation jointly in a single model. In this unified network, we incorporate
two attention modules, cross-modal attention and memory attention modules,
where memory attention encourages temporal consistency while cross-modal at-
tention prevents drift. In addition, we introduce a new large-scale benchmark
dataset for referring video object segmentation task, called Refer-Youtube-VOS.
Our dataset is one order of magnitude larger than the previous benchmark [10],
which enables researchers to develop new models and validate their performance.
We evaluate the proposed method extensively and observe that our approach
achieves outstanding performance gain on the new large-scale dataset.

Our contributions are summarized below.

• We construct a large-scale referring video object segmentation dataset, which
contains 27, 000+ referring expressions for 3, 900+ videos.

• We propose a unified end-to-end deep neural network that performs both
language-based object segmentation and mask propagation in a single model.

• Our method achieves significant performance gains over previous methods
in the referring video object segmentation task.

2 Related Work

Referring Image Segmentation This task aims to produce a segmentation
mask of an object in an input image given a natural language expression. Hu et
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Full : “A person on the right dressed in blue black walking while holding a white bottle.”
First : “A woman in a blue shirt and a black bag.”

Full : “A person showing his skateboard skills on the road.”
First : “A man wearing a white cap.”

Fig. 1: Annotation examples of Refer-Youtube-VOS dataset. “Full” denotes that
annotators watch the entire video for annotation while “First” means that they
are given only the first frame of each video.

al. [8] first propose the task with a baseline algorithm that relies on multi-
modal visual-and-linguistic features extracted from LSTM and CNN. RRN [12]
utilizes the feature pyramid structures to take advantage of multi-scale semantics
for referring image segmentation. MAttNet [37] introduces a modular attention
network, which decomposes a multi-modal reasoning model into a subject, object
and relationship modules, and exploits attention to focus on relevant modules.
CMSA [36] employs cross-modal self-attentive features to bridge the attentions in
language and vision domains and capture long-range correlations between visual
and linguistic modalities effectively. Our model employs a variant of CMSA to
obtain the cross-modal attentive features effectively.

Video Object Segmentation Video object segmentation is categorized into
two types. Unsupervised approaches do not allow user interactions during test
time, and aim to segment the most salient spatio-temporal object tubes. They
typically employ two-stream networks to fuse motion and appearance cues [27,
13, 38] for learning spatio-temporal representations.

Semi-supervised video object segmentation tracks an object mask in a whole
video, assuming that the ground-truth object mask is provided for the first frame.
With the introduction of DAVIS [25] and Youtube-VOS [34] datasets, there has
been great progress in this task. There are two main categories, online learning
and offline learning. Most approaches rely on online learning, which fine-tunes
networks using the first-frame ground-truth at test-time [2, 14, 24]. While the
online learning achieves outstanding results, its computational complexity at
test-time limits its practical use. Offline methods alleviate this issue and reduce
runtime [35, 32, 29, 22]. STM [22] presents a space-time memory network by
non-local matching between previous and current frames, which achieves state-
of-the-art performance, even beating online learning methods. Our model also
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Table 1: Datasets for referring video object segmentation. J-HMDB and A2D
Sentences [6] focus on ‘action’ recognition along with ‘actor’ segmentation, which
have different purposes than ours. Although Refer-DAVIS16/17 are well-suited
for our task, they are small datasets with limited diversity. Our dataset, Refer-
Youtube-VOS, is the largest dataset containing objects in diverse categories.

Dataset Target Videos Objects Expressions

J-HMDB Sentences [6] Actor 928 928 928
A2D Sentences [6] Actor 3782 4825 6656

Refer-DAVIS16 [10] Object 50 50 100
Refer-DAVIS17 [10] Object 90 205 1544

Refer-Youtube-VOS (Ours) Object 3975 7451 27899

belongs to offline learning, which modifies the non-local module of STM for its
integration into our memory attention network and exploits temporal coherence
of segmentation results.

Multi-modal Video Understanding The intersection of language and video
understanding has been investigated in various areas including visual track-
ing [15], action segmentation [6, 30], video captioning [19] and video question
answering [5]. Gavrilyuk et al. [6] adopt a fully-convolutional model to segment
an actor and its action in each frame of a video as specified by a language query.
However, their method has been validated in the datasets with limited class di-
versities, A2D [33] and J-HMDB [9], which only have 8 and 21 predefined action
classes, respectively. Khoreva et al. [10] have augmented the DAVIS dataset with
language referring expressions and have proposed a way to transfer image-level
grounding models to video domain. Although [10] is closely related to our work,
it fails to exploit valuable temporal information in videos during training.

3 Refer-Youtube-VOS Dataset

There exist previous works [6, 10] that constructed referring segmentation datasets
for videos. Gavrilyuk et al. [6] extended the A2D [33] and J-HMDB [9] datasets
with natural sentences; the datasets focus on describing the ‘actors’ and ‘actions’
appearing in videos, therefore the instance annotations are limited to only a few
object categories corresponding to the dominant ‘actors’ performing a salient
‘action’. Khoreva et al. [10] built a dataset based on DAVIS [25], but the scales
are barely sufficient to learn an end-to-end model from scratch.

To facilitate referring video object segmentation, we have constructed a large-
scale video object segmentation dataset, Youtube-VOS [34], with referring ex-
pressions. Youtube-VOS has 4,519 high-resolution videos with 94 common object
categories. Each video has pixel-level instance segmentation annotation at ev-
ery 5 frames in 30-fps videos, and their durations are around 3 to 6 seconds.
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We employed Amazon Mechanical Turk to annotate referring expressions. To
ensure the quality of the annotations, we selected around 50 turkers after a val-
idation test. Each turker was given a pair of videos, the original video and the
mask-overlaid one with the target object highlighted, and was asked to provide
a discriminative sentence within 20 words that describes the target object ac-
curately. We collected two kinds of annotations, which describe the highlighted
object (1) based on a whole video (Full-video expression) and (2) using only the
first frame of the video (First-frame expression). After the initial annotation, we
conducted verification and cleaning jobs for all annotations, and dropped objects
if an object cannot be localized using language expressions only. The followings
are the statistics and analysis of the two annotation types of the dataset after
the verification.

Full-video expression Youtube-VOS has 6,459 and 1,063 unique objects in
train and validation split, respectively. Among them, we cover 6,388 unique ob-
jects in 3,471 videos (6, 388/6, 459 = 98.9%) with 12,913 expressions in train
split and 1,063 unique objects in 507 videos (1, 063/1, 063 = 100%) with 2,096
expressions in validation split. On average, each video has 3.8 language expres-
sions and each expression has 10.0 words.

First-frame expression There are 6,006 unique objects in 3,412 videos (6, 006
/6, 459 = 93.0%) with 10,897 expressions in train split and 1,030 unique objects
in 507 videos (1, 030/1, 063 = 96.9%) with 1,993 expressions in validation split.
The number of annotated objects is lower than that of the full-video expressions
because using only the first frame makes annotation more ambiguous and incon-
sistent and we dropped more annotations during the verification. On average,
each video has 3.2 language expressions and each expression has 7.5 words.

Dataset analysis Fig. 1 illustrates examples of our dataset and shows the dif-
ferences between two annotation types. The full-video expressions can use both
static and dynamic information of a video while the first-frame expressions focus
mostly on appearance information. We also provide the quantitative compari-
son of our dataset against the existing ones in Table 1, which presents that our
dataset contains much more videos and language expressions.

4 Unified Referring VOS Network

Given a video with N frames and a language query Q, the goal of referring video
object segmentation is to predict binary segmentation masks for the object(s)
corresponding to the query Q in the N frames. As mentioned earlier, a näıve
approach is to estimate the mask for each frame independently. However, a
direct application of image-based solutions to referring object segmentation [12,
18, 36, 37] would fail to exploit valuable information, temporal coherence across
the frames. Therefore, we cast the referring video object segmentation task as a
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Fig. 2: The overall architecture of our framework. We employ ResNet-50 as our
encoder and use the 4th and the 5th stage features (Res4 and Res5) to estimate
memory and cross-modal attention, respectively. Both memory-attentive and
cross-modal attentive features are progressively combined in the decoder.

joint problem of referring object segmentation in an image [12, 18, 36, 37] and
mask propagation in a video [32, 22].

4.1 Our Framework

We propose a unified framework that performs referring image segmentation and
video object segmentation jointly. Given a video and a referring expression, our
network estimates an object mask in an input frame using the linguistic refer-
ring expression and the mask predictions in the previous frames. We iteratively
process video frames until the mask predictions in all frames converge. Fig. 2
illustrates the overall architecture of our network.

Visual Encoder We employ ResNet-50 as our backbone network to extract
visual features from an input frame. To include spatial information of the visual
feature, we augment 8-dimensional spatial coordinates following [8]. Formally,
let F ∈ RH×W×Cf and fp ∈ RCf denote a visual feature map3 and a sliced visual
feature at a certain spatial location p on F, where p ∈ {1, 2, ...,H ×W}. We
concatenate the spatial coordinates to the visual features fp to obtain location-
aware visual features f̄p as follows.

f̄p = [fp; sp] ∈ RCf+8, (1)

where sp is a 8-dimensional spatial coordinate features4.

3 We use Res5 and Res4 feature maps in our model.
4 For each spatial grid (h,w), sp = [hmin, havg, hmax, wmin, wavg, wmax, 1

H
, 1

W
], where

h∗, w∗ ∈ [−1, 1] are relative coordinates of the grid. H and W denotes the height
and width of the whole spatial feature map.
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Language Encoder Given a referral expression, a set of words in the expression
is encoded as a multi-hot vector and projected onto an embedding space in Ce

dimensions using a linear layer. To model the sequential nature of language
expressions while maintaining the semantics in the expression, we add positional
encoding [28] at each word position. Let wl ∈ RCe and pl ∈ RCe denote the
embeddings for the l-th word and the position of the expression, respectively.
Our lingual feature is obtained by the sum of the two embedding vectors, i.e.,
el = wl + pl ∈ RCe .

Cross-modal Attention Module Using both visual and lingual features, we
produce a joint cross-modal feature representation by concatenating the features
in both the domains. Unlike [36], we first apply self-attention to each feature in-
dependently before producing a joint feature to capture complex alignments be-
tween both modalities effectively. Each self-attention module maps each feature
to a Ca-dimensional space for both modalities as follows:

f̂p = SAvis(fp) ∈ RCa , êl = SAlang(el) ∈ RCa (2)

where SA∗(·) (∗ ∈ {vis, lang}) denotes a self-attention module for each domain.
Then a joint cross-modal feature at each spatial position p and each word position
l is given by

cpl = [̂fp; êl] ∈ RCa+Ca . (3)

We collect all cross-model features cpl and form a cross-modal feature map as
C = {cpl | ∀p,∀l} ∈ RH×W×L×(Ca+Ca).

The next step is to apply self-attention to this cross-modal feature map C.
Fig. 3(a) iluustrates our cross-modal attention module. We generate a set of (key,
query, value) triplets, denoted by (k,q,v), using 2D convolutions as follows:

k = Convkey(C) ∈ RL×H×W×Ca (4)

q = Convquery(C) ∈ RL×H×W×Ca (5)

v = Convvalue(C) ∈ RL×H×W×Ca (6)

and we compute cross-modal attentive features by estimating the correlation
between all combinations of pixels and words as

ĉpl = cpl +
∑
∀p′,∀l′

Softmax(qpl · kp′l′)vp′l′ , (7)

where · denotes the dot-product operator. We average the self-attentive features
over words and derive the final cross-modal feature as ĉp = 1

L

∑
l cpl and Ĉ =

{ĉp | ∀p} ∈ RH×W×Cb .

Memory Attention Module To leverage information in the mask predictions
at the frames processed earlier, we extend the idea introduced in [22] and design
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Fig. 3: Detailed illustrations of cross-modal and memory attention modules. Each
module retrieves relevant information from language and memory frames for the
target image to obtain self-attentive features.

a memory attention module. This module retrieves the relevant information from
the previous frame by computing the correlation between the visual feature map
of the current frame and the mask-encoded visual feature map of the previous
frame. Note that the mask-encoded visual features is obtained from another
feature extractor that takes 4-channel inputs given by stacking an RGB image
and its segmentation mask in the channel direction. We will call the current and
previous frames as target and memory frames, respectively, hereafter.

Different from the previous method [22], we introduce a 12-dimensional spatio-
temporal coordinate feature, s̃tp

5, where the first 3 dimensions encode normal-
ized temporal positions, the next 6 dimensions represent normalized vertical and
horizontal positions, and the last 3 dimensions contain the information about
duration and frame size of the whole video.

Let T be the number of memory frames. For a target frame and T mem-
ory frames, we first compute key (k,kmem) and value (v,vmem) embeddings as
follows:

F = {[fp; sp]|∀p} ∈ RH×W×(Cf+8) (8)

k = Convkey(F) ∈ RH×W×Cb (9)

v = Convvalue(F) ∈ RH×W×Cb (10)

F
mem

= {[fmem
tp ; s̃tp]|∀t,∀p} ∈ RT×H×W×(Cf+12) (11)

kmem = Convmem
key (F

mem
) ∈ RT×H×W×Cb (12)

vmem = Convmem
value(F

mem
) ∈ RT×H×W×Cb (13)

5 s̃tp = [tmin, tavg, tmax, hmin, havg, hmax, wmin, wavg, wmax,
1
T
, 1
H
, 1
W

].
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Fig. 4: Detailed illustration of our decoder. It first combines the cross-modal

attentive feature map Ĉ, the memory attentive feature map M̂, and the original
visual feature map Fl in multiple levels l ∈ {2, 3, 4, 5} in a progressive manner.
‘R’ denotes ResBlocks and ‘×2’ denotes upsampling layers in this figure. The
multi-scale outputs are strengthened through a self-attention module, and then
employed to estimate the final segmentation masks.

where f and fmem denotes target and memory visual features, and s and s̃
denotes spatial and spatio-temporal coordinate features, respectively. Then, the
memory-attentive feature m̂p at the spatial location p is given by

m̂p = vp +
∑
∀t′,∀p′

f(kp,k
mem
t′p′ )vmem

t′p′ (14)

and M̂ = {m̂p | ∀p} ∈ RH×W×Cb . Fig. 3(b) presents the detailed illustration
of the memory attention module, which shows how it computes the relevance
between target frame and memory frames using key-value structure. Since it
attends the regions in the target frame that are relevant to previous predictions,
our algorithm produces temporally coherent segmentation results. Note that we
employ the 4th stage features (Res4) for both target and memory frames in this
module because it requires more descriptive features to compute the correlation
between local regions of the frames, while cross-modal attention module employs
the 5th stage features (Res5) to exploit more semantic information.

Decoder with Feature Pyramid Network We employ a coarse-to-fine hi-
erarchical structure in our decoder to combine three kinds of semantic features;

the cross-modal attentive feature map Ĉ, the memory attentive feature map M̂,
and the original visual feature map Fl in different levels l ∈ {2, 3, 4, 5}. Fig. 4
illustrates how our decoder combines those three features using a feature pyra-
mid network in a progressive manner. Each layer in the feature pyramid network
takes the output of the previous layer and the ResBlock-encoded visual feature in
the same level Fl. Additionally, its first and the second layers incorporate cross-

attentive features Ĉ and memory-attentive features M̂, respectively, to capture
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multi-modal and temporal information effectively. Note that each layer in the
feature pyramid network is upsampled by the factor of 2 to match the feature
map size to that of the subsequent level.

Instead of using the outputs from individual layers in the feature pyramid
for mask generation, we employ an additional self-attention module following
BFPN [23] to strengthen feature semantics of all levels. To this end, we first
average the output features in all levels after normalizing their sizes and apply
a self-attention to the combined feature map. The resulting map is rescaled to
the original sizes, and the rescaled maps are aggregated to the original output
feature maps forwarded through identity connections. Finally, these multi-scale
outputs are employed to estimate segmentation masks in 1/4 scale of the input
image, following the same pipeline in [11].

Inference Our network takes three kinds of inputs: a target image, memory
images and their mask predictions, and a language expression. Since there is no
predicted mask at the first frame, we introduce a novel two-stage procedure for
its inference to fully exploit our two attention modules.

In the first stage, we run our network with no memory frame, which results
in independent mask prediction at each frame based only on the language ex-
pression. After the initial per-frame mask estimation, we select an anchor frame,
which has the most confident mask prediction for the language expression. To
this end, we calculate the confidence score of each frame by averaging the pixel-
wsie final segmentation scores and select the frame with the highest one.

In the second stage, we update our initial segmentation results starting from
the anchor to both ends using our full network. We first set the anchor frame as
a memory frame, and re-estimate the object mask by sequentially propagating
the mask prediction from anchor frame. After updating mask prediction at each
frame, we add the image and its mask to the memory. In practice, however, cu-
mulating all previous frames to the memory may cause memory overflow issues
and slow down inference speed. To alleviate this problem, we set the maximum
number of memory frames to T . If the number of memory frames reaches T ,
then we replace the least confident frame in the memory with the new predic-
tion. Note that we leverage the previous mask predictions in the memory frames
and estimate the mask of the target frame. At the same time, we use a lan-
guage expression for guidance during the second stage as well, which allows us
to handle challenging scenarios like drift and occlusions. We iteratively refine
segmentation by repeating the second stage based on the new anchor identified
at each iteration.

5 Experiments

We first evaluate the proposed method on our Refer-Youtube-VOS dataset, and
perform comparison to the existing work on the Refer-DAVIS17 dataset [10]. We
also provide diverse ablation studies to validate the effectiveness of our dataset
and framework.
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Table 2: The quantitative evaluation of referring video object segmentation on
the Refer-Youtube-VOS validation set.

Method prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 J F
Baseline (Image-based) 31.98 27.66 21.54 14.56 4.33 33.34 36.54

Baseline + RNN 40.24 35.90 30.34 22.26 9.35 34.79 38.08

Ours w/o cross-modal attention 41.58 36.12 28.50 20.13 8.37 38.88 42.82
Ours w/o memory attention 46.26 40.98 34.81 25.42 10.86 39.38 41.78

Ours 52.19 46.77 40.16 27.68 14.11 45.27 49.19

Table 3: The quantitative evaluation of referring video object segmentation on
Refer-DAVIS17 validation set.

Method Pretrained J F
Khoreva et al. [10] RefCOCO [20] 37.3 41.3

Ours RefCOCO [20] 41.23 47.01

Baseline (frame-based) Refer-YV (ours) 32.19 37.23
Basline + RNN Refer-YV (ours) 36.94 43.45

Ours w/o cross-modal attention Refer-YV (ours) 38.25 43.20
Ours w/o memory attention Refer-YV (ours) 39.43 45.87

Ours (pretraining only) Refer-YV (ours) 44.29 49.41
Ours Refer-YV (ours) 47.29 55.96

5.1 Implementation Details

We employ a pretrained ResNet-50 on the ImageNet dataset as our backbone
network. Every frame of an input video is resized to 320 × 320. The maximum
length of an expression, L, is 20 and the dimensionality of the word embedding
space, Ce, is 1,000. We train our model using the Adam optimizer with a batch
size 16. Our model is trained end-to-end for 120 epochs. The learning rate is
initialized to 2 × 10−5 and decayed by the factor of 10 at every 80 epochs. We
set the maximum number of memory frames, T , to 4.

5.2 Evaluation Metrics

We use two standard evaluation metrics, the region similarity (J ) and the con-
tour accuracy (F) following [26]. Additionally, we also measure prec@X, the
percentage of correctly segmented frames in the whole dataset, given a prede-
fined threshold X sampled from the range [0.5, 0.9]. Note that segmentation in
a frame is regarded as successful if its J score is higher than a threshold.

5.3 Quantitative Results

Refer-Youtube-VOS We present the experimental results of our framework
on the Refer-Youtube-VOS dataset in Table 2. We follow the original Youtube-
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(a) A person wearing a white shirt with white helmet riding a bike.

(b) A laying cat gets up and jumps towards the camera.

(c) A tiger to the right of another tiger.

(d) A man with an instrument standing in between two other people.

Fig. 5: Qualitative results of our models on Refer-Youtube-VOS dataset.

VOS dataset [34] to split the data into training and validation sets. In Table 2,
‘Baseline’ denotes a variant of the frame-based model [36] with our feature pyra-
mid decoder while ‘Baseline + RNN’ is an extension of the baseline model, which
applies a GRU layer to the visual features extracted from multiple input frames
for sequential estimation of masks. ‘Ours w/o cross-modal attention’ and ‘Ours
w/o memory attention’ are the ablative models without the cross-modal atten-
tion module and the memory attention module, respectively, for both training
and inference. As shown in Table 2, our full model achieves remarkable perfor-
mance gain over all the compared models on the Refer-Youtube-VOS dataset.
The huge performance boost in our full model with respect to the ablative ones
implies crucial role of the integrated attention modules in this referring video
object segmentation task.

Refer-DAVIS17 DAVIS 2017 [25] is the most popular benchmark dataset for
the video object segmentation task, which consists of 197 objects in 89 videos.
Each video is composed of high-resolution frames with segmentation annotations,
and involves various challenges including occlusions, multi-object interactions,
camera motion, etc. Refer-DAVIS17 [10] is the extension of DAVIS 2017 with
natural language expressions. We evaluated all the models tested on the Refer-
Youtube-VOS dataset. Because the number of videos in the DAVIS dataset is
not sufficient to train the models for our task from scratch, we pretrain the
models on Refer-Youtube-VOS and then fine-tune them on Refer-DAVIS17. Ta-
ble 3 shows the experimental results, where our model outperforms the existing
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Table 4: The effects of dataset scale on our algorithm. We evaluate on the same
validation set for each scale.

Dataset Scale 10% 20% 30% 50% 100%

J 30.73 37.77 39.19 42.48 45.27
F 32.92 41.02 43.15 46.05 49.19

method [10] and the ablative models. For the fair comparison with [10], we pre-
trained our model on a large-scale referring image segmentation benchmark [20];
our method turns out to be better than [10] under the same pretraining en-
vironment. Also, note that our model pretrained on Refer-Youtube-VOS with
no fine-tuning on Refer-DAVIS17 outperforms all other baselines while our full
model further boosts accuracy significantly. This demonstrates the effectiveness
of the new large-scale dataset and the proposed network.

5.4 Qualitative Results

Fig. 5 illustrates the qualitative results of our method on the Refer-Youtube-
VOS dataset. The proposed model segments the target objects successfully with
sharp boundaries on many videos and queries. We observe that our framework
handles occlusion, deformation, and target identification effectively. See our sup-
plementary documents for more qualitative results.

5.5 Analysis

Dataset Scale To investigate how the accuracy of a model changes depend-
ing on dataset sizes, we conduct experiments on four different subsets of the
Refer-Youtube-VOS dataset, which contains 10%, 20%, 30%, and 50% of train-
ing examples, respectively. Table 4 presents the impact of dataset scale on model
performance. As expected, the accuracy gradually improves upon the increase
in the dataset size, which demonstrates the importance of a large-scale dataset
on the referring video object segmentation task.

Inference procedure To validate the effectiveness of our inference scheme, we
compare it with two other options for mask prediction. The baseline method,
denoted by ‘Forward’, computes the mask at the first frame and propagates it
in the forward direction until the end of video. We have also tested a variant
(‘Anchor + Previous’) of the proposed two-stage inference method. ‘Anchor +
Previous’ first estimates the masks in each frame independently and propagate
an anchor frame in a sequential manner, where the previous T frames are used as
memory frames during the second stage. Table 5 presents that our full inference
technique gives the best performance, which implies that both use of anchor
frames and memory frame selection by confidence contribute to improving seg-
mentation results.
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Table 5: Ablation study on the effects of inference procedures.

Inference scheme J F
Forward 43.13 49.07

Anchor + Previous 44.58 49.14
Ours 45.27 49.19

Table 6: Iteration of inference procedures in terms of region similarity (J ).

Stage 1
Stage 2

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 10

J 41.34 45.27 45.33 45.41 45.44 45.43 45.46

Iterative inference We study the benefit given by the multiple iterations of
the second stage inference step. Table 6 illustrates that the iterative inference
procedure gradually improves accuracy and tends to be saturated after 5 itera-
tions.

6 Conclusion

We have proposed a unified referring video object segmentation network to ex-
ploit both language-based object segmentation and mask propagation in a single
model. Our two attention modules, cross-modal attention and memory attention,
collaborate to obtain accurate target object masks specified by language expres-
sions and achieve temporally coherent segmentation results across frames. We
also constructed the first large-scale referring video object segmentation dataset.
Our framework accomplishes remarkable performance gain on our new dataset
as well as the existing one. We believe the new dataset and our proposed method
will foster the new direction in this line of research.
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L.: One-shot video object segmentation. In: CVPR (2017) 1, 3

3. Caelles, S., Montes, A., Maninis, K.K., Chen, Y., Van Gool, L., Perazzi, F., Pont-
Tuset, J.: The 2018 davis challenge on video object segmentation. arXiv preprint
arXiv:1803.00557 (2018) 1

4. Chen, Y., Pont-Tuset, J., Montes, A., Van Gool, L.: Blazingly fast video object
segmentation with pixel-wise metric learning. In: CVPR (2018) 1

5. Fan, C., Zhang, X., Zhang, S., Wang, W., Zhang, C., Huang, H.: Heterogeneous
memory enhanced multimodal attention model for video question answering. In:
CVPR (2019) 4

6. Gavrilyuk, K., Ghodrati, A., Li, Z., Snoek, C.G.: Actor and action video segmen-
tation from a sentence. In: CVPR (2018) 4

7. Goel, V., Weng, J., Poupart, P.: Unsupervised video object segmentation for deep
reinforcement learning. In: NIPS (2018) 1

8. Hu, R., Rohrbach, M., Darrell, T.: Segmentation from natural language expres-
sions. In: ECCV (2016) 3, 6

9. Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding
action recognition. In: CVPR (2013) 4

10. Khoreva, A., Rohrbach, A., Schiele, B.: Video object segmentation with language
referring expressions. In: ACCV (2018) 2, 4, 10, 11, 12, 13

11. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks.
In: CVPR (2019) 10

12. Li, R., Li, K., Kuo, Y.C., Shu, M., Qi, X., Shen, X., Jia, J.: Referring image
segmentation via recurrent refinement networks. In: CVPR (2018) 2, 3, 5, 6

13. Li, S., Seybold, B., Vorobyov, A., Lei, X., Jay Kuo, C.C.: Unsupervised video
object segmentation with motion-based bilateral networks. In: ECCV (2018) 3

14. Li, X., Change Loy, C.: Video object segmentation with joint re-identification and
attention-aware mask propagation. In: ECCV (2018) 3

15. Li, Z., Tao, R., Gavves, E., Snoek, C.G., Smeulders, A.W.: Tracking by natural
language specification. In: CVPR (2017) 4

16. Liu, C., Lin, Z., Shen, X., Yang, J., Lu, X., Yuille, A.: Recurrent multimodal
interaction for referring image segmentation. In: ICCV (2017) 2

17. Maninis, K.K., Caelles, S., Pont-Tuset, J., Van Gool, L.: Deep extreme cut: From
extreme points to object segmentation. In: CVPR (2018)
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