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Abstract

We present a scalable approach for learning powerful
visual features for emotion recognition. A critical bot-
tleneck in emotion recognition is the lack of large scale
datasets that can be used for learning visual emotion fea-
tures. To this end, we curated a webly derived large scale
dataset, StockEmotion, which has more than a million im-
ages. StockEmotion uses 690 emotion related tags as la-
bels giving us a fine-grained and diverse set of emotion
labels, circumventing the difficulty in manually obtaining
emotion annotations. We used this dataset to train a fea-
ture extraction network, EmotionNet, which we further reg-
ularized using joint text and visual embedding and text dis-
tillation. Our experimental results establish that Emotion-
Net trained on the StockEmotion dataset outperforms SOTA
models on four different visual emotion tasks. An added
benefit of our joint embedding training approach is that
EmotionNet achieves competitive zero-shot recognition per-
formance against fully supervised baselines on a challeng-
ing visual emotion dataset, EMOTIC, which further high-
lights the generalizability of the learned emotion features.

1. Introduction
Understanding the emotion conveyed in an image or a

video is an important computer vision task, one that has
a wide range of applications from digital content manage-
ment [3, 6, 19, 45] and marketing [17, 27, 50] to educa-
tion [10, 35] and healthcare [7]. In this paper, we address
the need for a general visual emotion representation. We
propose EmotionNet, a convolutional network that can take
any input image and output a feature vector representing
the emotion conveyed in the input image. The output fea-
ture vector can then be used for various downstream tasks
such as emotion recognition, conditional image caption-
ing and generation—much like how the feature vector from
ResNet [13] pretrained on ImageNet can be used for many
downstream visual recognition tasks such as image classifi-
cation, object detection, person tracking, and semantic seg-

mentation. In other words, EmotionNet for visual emotions
is analogous to a pretrained VGG16 for object categories.

EmotionNet is an emotion specific feature extraction net-
work. One might question its merits over other general fea-
ture extraction networks such as a ResNet pretrained on Im-
ageNet [9]. Unfortunately, such general feature extraction
networks are not suitable for emotion analysis, as demon-
strated in our experiments. This is understandable because
ImageNet pretraining mainly forces the networks to distin-
guish between object categories, not visual emotions. De-
tecting emotion requires more than being able to recognize
object classes – the same object can evoke different emo-
tions depending on the context in which it appears.

To build a useful feature extraction model, it is crucial to
have relevant training data; in our case, an emotion dataset
at the scale of ImageNet with a million images and a well-
defined taxonomy over hundreds of categories is desirable.
Unfortunately, it is difficult to use the same approach as Im-
ageNet to collect an annotated dataset for emotion. Due
to language ambiguities and the abstract nature of emo-
tion definitions, identifying emotion in an image is a much
harder task than labeling object categories when there is no
definitive emotion taxonomy over hundreds of categories.
Most existing visual emotion datasets only provide anno-
tations for a small set of emotion categories on a limited
scale. Thus, features learned on such limited datasets gen-
eralize poorly to other emotion datasets [16, 33].

In this paper, we propose to learn EmotionNet by lever-
aging web data. We use commercial stock images and their
associated tags as our data source and annotation. Different
from previous datasets that are manually labeled based on
predefined emotion taxonomies with limited categories, we
curate our stock image dataset based on 690 common tags
that are related to more fine-grained and open categories
of emotions. The resulting dataset, StockEmotion, is com-
posed of over one million stock images, covering diverse
emotion concepts related to humans, scenes, and symbols.

However, annotated stock image tags can be incomplete
and noisy. The owner or creator of an image might only
provide a few tags for each image, or might associate an
image with concepts that are unrelated or only remotely re-
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lated to the image. So, we need to address the technical
challenge of how to learn from noisily and partially labeled
images. Based on the fact that the representations of vi-
sual data (e.g., the input image) and text data (the associated
tags) should be semantically close to each other, correlating
information in the tags and the images can act as a regular-
izer for the image representation. To this end, we propose
an approach for training a joint text and visual embedding
that (1) reduces noise in the webly annotated tags and (2)
induces a joint space that can be used for cross-modal tasks.

Empirically, we show that EmotionNet, a standard Con-
vNet architecture trained on the StockEmotion dataset, is
indeed useful for various emotion recognition benchmarks.
In addition, EmotionNet can be further enhanced by lever-
aging the image tags through knowledge distillation from
text models. We investigate text models and embeddings
learned in unsupervised and semi-supervised settings. The
text models are used to denoise the keyword labels and en-
force joint visual-text embeddings to regularize the visual
feature learning.

The induced joint visual-text emotion embedding space
can also be used for zero-shot emotion recognition. We
achieve competitive performance against fully-supervised
methods on the challenging EMOTIC dataset [21].

To sum up, our contributions are as follows:
1. We introduce a large-scale image dataset for visual

emotion content1.
2. We provide a general feature extraction network for

emotion. This feature representation achieves state-of-
the-art performance on several visual emotion bench-
marks across different domains. The learned joint
vision-text embedding achieves competitive zero-shot
learning performance.

3. We propose methods to handle noisily, partially anno-
tated data, improving visual feature learning through
text model distillation and joint visual-text embedding.

2. Related Work

Emotion in Psychological Research. Studying emotions
and their relations is an important research area in psy-
chology. Two competing approaches are used in describing
emotion: categorical [8, 11, 34, 36] that classifies emotions
into basic categories and dimensional [38, 51] that projects
emotions into a continuous manifold. Our work sidesteps
this debate in that we construct a large collection of emo-
tional words and learn an emotion representation in a data-
driven approach. With a large number of emotional words,
our model implicitly has much higher dimension than the
traditional two to three dimension models used in psychol-
ogy, allowing us to capture subtle differences in emotions.

1This dataset is available for research use at https://github.
com/cvlab-stonybrook/EmotionNet_CVPR2020

Language plays a fundamental role in experiencing and
perceiving emotions [24]. With this in mind, our approach
connects visual emotion features to a latent emotion space
learned from a textual embedding. Our work uses language
models to learn an emotion embedding from the text key-
words associated with images. See [49] for a detailed re-
view on emotion detection in text.

Visual Emotion Datasets. Visual emotion detection is of-
ten framed as a classification problem defined over a small
number of predefined emotion classes [21, 22, 25, 32, 33].
However, such a limited categorical taxonomy fails to cap-
ture the rich variation and mixture of emotions expressed in
images and limits the diversity of retrieved images. There
are some datasets with a larger number of categories that
combine emotion words with nouns and their descriptive
context [2, 5]. Our work goes further and introduces a richer
descriptive set for modeling emotions using the natural dis-
tributions of keywords assigned to images.

Learning from noisy data. In this paper, we develop
a method for training a feature extraction network from
noisily annotated web data. Handling noisily labeled data
is a well-studied area with many solutions (e.g., [14, 42,
43]), and we refer the reader to [12] for a comprehensive
overview of label noise and robust algorithms.

In our work, we constrain images to be close to their
keywords in the joint space induced by the transformation
from visual space to textual space. Such multi-view struc-
ture preservation constraints have been explored in the met-
ric learning literature [15, 28, 39]. However, different from
previous work which requires a small set of clean data [48],
our work does not need any clean labels as it is difficult to
collect clean labels for stock images. We therefore develop
a training method where a regularization term on the noisy
labels is added to mitigate the label noise itself.

3. The StockEmotion Dataset
We have collected a large-scale dataset of images from

Adobe Stock with emotion keywords extracted from the
original image keywords provided by the image uploaders.
Some samples are shown in Fig. 1.

3.1. Data Collection

We used Adobe Stock to search images using an over-
complete set of emotion keywords to cover diverse emo-
tion concepts. Initially, we constructed a list of emotion
keywords using linguistic emotion lexicons such as NRC-
emotion [31] and WordNet-Affect [40]. However, we found
that these emotion lexicons are not suitable for computer
vision tasks. For example, many adjectives such as beau-
tiful and white are labeled with emotions in these lexicons,
but these keywords are often associated with images that do
not convey the corresponding emotion information. To get

https://github.com/cvlab-stonybrook/EmotionNet_CVPR2020
https://github.com/cvlab-stonybrook/EmotionNet_CVPR2020


Figure 1: Left: A sample of the image data. Each image comes with a set of keywords (denoted as keyword-full) provided by
the image uploader. Some of them are related to emotions (in red) while the others are not (in black). Middle: Sample images
that convey a range of �ne-grained emotions. Emotion related keywords provide a richer, more �ne-grained vocabulary to
describe emotions compared to the basic emotion categories (happy, sad, anger, ...) used in current datasets [32, 33, 52].
Right: Image samples from various emotion categories of the StockEmotion Database (four samples per category). Note the
diversity of the objects and scenes involved in each category.

a better list of keywords, we randomly sampled four mil-
lion images from Adobe Stock and ranked the keywords
associated with the images by frequency. After removing
low-frequency keywords, we obtained about 2000 keyword
candidates. We then manually selected keywords that ei-
ther: 1) are related to emotions (e.g. depression, fury, mad),
2) describe emotional feelings (e.g. romantic, chaotic) and
3) describe actions or events that directly trigger emotional
reactions (e.g. bully, Christmas). In the end, based on a
majority vote of our in-house annotators, we kept 690 emo-
tional keywords (listed in supplementary material). Tab. 1
shows some representative keywords from each category.

Keyword Type Examples

Emotion
disappointed, nervous, frustrated,

discontent, pensive, bothered

Feeling
unfortunate, severe,

tranquil, romantic, chaotic

Action
quarrel, threat, yell

pray, smile, hug

Events
Christmas, Halloween, wedding

funeral, nightmare

Table 1: Different examples of emotional keywords.

Using these emotion keywords, we retrieved 4 million
images along with the complete list of keywords associated
with each image. We then removed duplicates using per-
spective Hash2. This left us with over one million images
to use for our StockEmotion dataset. For each image, the
keywords included in our emotion keyword list are used as
its weak emotion labels.

2http://www.phash.org/

Our approach for collecting the stock images is moti-
vated by the fact that emotion tags map poorly to existing
emotion taxonomies. Many category names in the emo-
tion taxonomies are rarely used for tagging stock images,
leading to poor image retrieval results for data collection.
Moreover, there are also many emotional tags that are not
included in the taxonomies' vocabulary,e.g. abuse, danger
andchallenge, which can provide useful semantic context
for identifying �ne-grained emotions.

3.2. Statistics

StockEmotion consists of 1.17 million images which we
split, at random, into training (1.06 M), validation (33K),
and testing (71K) subsets. Each image on average has 48.9
keywords, among which 7.04 are emotional keywords in-
cluded in our 690-keyword list.

Since StockEmotion is curated through web search, it
includes noisy labels. To estimate the amount of noise in the
labels, we randomly sampled a subset of 1000 images and
asked our lab colleagues to manually check the correctness
of the weak emotion labels. The error rate of the emotion
labels turned out to be around 15%, making it suitable for
training deep convolutional networks [37].

There are around 600K images with one or more people
detected by an open-source face/body detector [4]. About
280K out of the 600K images have one single clear face
in the image. A signi�cant portion of the images do not
contain humans, and can be scenes, objects and symbols
related to emotions, as shown in Fig. 1.

Looking at the co-occurrence matrix for the keywords,
we found that only a small portion of the keywords co-occur
frequently. Most of the 690 categories are independent of
each other. A visualization for the co-occurrence matrix is



provided in the supplementary material.

3.3. SE30K8 – A Manually Annotated Subset

For veri�cation and controlled studies, we collected
`cleaner' annotations, albeit of a different type, for a sub-
set of the images. Starting from Ekman's emotion tax-
onomy [11]: anger, happiness, surprise, disgust, sadness,
fear, we added aneutral category and divided the surprise
category intosurprise-positiveandsurprise-negative. This
led to a set of eight emotion categories.

We collected human annotation for the eight emotion
categories for a subset of 33K images, using Amazon Me-
chanical Turk (AMT). For each image, annotators were
asked to select all the emotional categories expressed in the
image. Each image was annotated by �ve AMT workers (af-
ter a quali�cation task). Annotations provided by the work-
ers are reasonably consistent: more than 85% of the images
had the same annotation by at least three annotators. Many
of these images have clearly conveyed emotions, but it is
dif�cult to describe them using basic categories [11, 36].

4. EmotionNet

EmotionNet is a general feature extraction network for
emotion, trained on the StockEmotion dataset, which has
emotion keywords for over a million images. As in most
annotations derived from web, the list of emotion keywords
for an image might be incomplete, erroneous, or both. The
presence or absence of a keyword in the list does not neces-
sarily mean that the image must or must not be associated
with that keyword. This is referred to as label noise, and we
estimate there is around 15% of label noise. Unfortunately,
this will impact the performance of feature extraction net-
works trained on the StockEmotion dataset, especially those
trained by minimizing the data negative log-likelihood.

To mitigate the noise problem, we propose to use an
additional data type that also comes with the stock im-
ages: text! In addition to the list of emotion keywords, each
image in our dataset also comes with other non-emotion
keywords, which should also be utilized to our bene�t.
Non-emotion keywords, by de�nition, do not convey emo-
tions, but there exist correlations between them. For exam-
ple, an image with keywords likesunday, young, outdoor
is likely to evoke positive emotions. We propose to use
the list of non-emotion keywords to infer the missing emo-
tion keywords; in particular, we train a text-based classi�er
that predicts emotion keywords from the list of non-emotion
keywords. The predicted distribution of emotion keywords
in combination with the tagged emotion keywords are now
used as the smoothed labels for training the feature extrac-
tor. Furthermore, we also regularize the visual features by
forcing them to be compatible with the text-derived repre-
sentation of the emotion keywords associated with them.
The overview of our proposed model is shown in Fig. 2.

Figure 2:Training of EmotionNet . The non-emotion key-
words of an image are used to predict the emotion keywords
associated with the image. The predicted emotions and the
original (noisy) emotion keywords are combined to form
the target class distribution. EmotionNet is trained by mini-
mizing two losses: the multi-label classi�cation loss and the
joint embedding loss. The joint embedding loss requires the
visual embedding of the image to be compatible to the tex-
tual embedding of the associated keywords. .

Figure 3:Architecture of text-to-emotion networks. This
architecture is used by a text-to-emotion network, mapping
an unordered list of keywords to a probability vector for
multiple emotion categories.

Many word embeddings already exist, and state-of-the-
art models often exploit the sequential and compositional
nature of text [41, 44]. In our case, however, the text asso-
ciated with each stock image is an unordered collection of
keywords with no sequential or compositional aspects. We
therefore use a simple model that combines the feature em-
beddings of multiple words to produce a �xed length feature
vector. Although simple, such models have been shown to
be effective for multiple text classi�cation tasks [1, 18, 46].

Fig. 3 shows the components of our text-to-emotion clas-
si�er. The classi�er is a mix of a text CNN [20] and a



deep averaging network (DAN) [18]. The classi�er uses
word2vecembeddings [30] to represent the keywords as
rows in an embedding matrix. The CNN component uses
a 1D convolution with kernel size one and a ReLU activa-
tion to transform the word embedding features into feature
maps. The DAN component averages the feature maps us-
ing an averaging pooling layer and then applies one fully-
connected layer for non-linear transformations. The result-
ing feature vector is projected onto theK = 690 emo-
tion keywords categories. We denote this text model as
TextCNN. We train thisTextCNNmodel on the training set
of the StockEmotion dataset.

The predicted probabilities from the text-to-emotion
classi�er are then combined with the original binary indi-
cators to yield an augmented label distribution as follows:

y0
k =

ŷk + yk

1 +
P K

i =1 ŷi

; (1)

whereŷk is the predicted probability by the text-to-emotion
classi�er for the emotion keywordk and an input imagex,
yk is the binary indicator for whether the keywordk is
among the original keywords of image, andy0

k is the re-
sulting soft label. The multiple-label classi�cation loss is
then expressed as:

L cls = �
1
K

KX

k=1

y0
k log(Pk (x)) : (2)

The second type of regularization that we introduce is
based on the observation that the tags provide an alternate
view for the emotion conveyed in the image. As such, we
can use the text-based embedding to aid the training of the
visual embedding. The main idea is to ensure that the vi-
sual emotion features are compatible with the text-based
features. We use the average of the keyword embeddings
as our text-based representation and map the visual features
into the same feature space. We add a regularization term
into the training loss to encourage a small cosine distance
between the text and the transformed visual features. For-
mally, the embedding loss for a pair of imagex and a list of
keywordsy is given by:

L embed = 1 � cos(f t (y ); W f v (x)) ; (3)

wheref t (y ) is the average of all keyword features,f v (x)
is the visual embedding of the input imagex, andW is
a linear transformation that maps the visual features to the
joint embedding space.

Finally, for a pair of imagex and associated keywordsy
we minimize the combined loss function between the clas-
si�cation loss and the embedding loss:

L = L cls + � L embed ; (4)

where� controls the strength of the embedding loss term.
We set� = 1 in all of our experiments for simplicity and did
not tune it for better performance. There are many other ad-
vanced solutions for this multimodal representation learn-
ing problem (detailed survey in [47]). Here we choose a
simple but effective approach, as shown in our experiments.

5. Experiments

This section describes experiments to evaluate the bene-
�ts of EmotionNet for several emotion analysis tasks. First,
we use EmotionNet as a feature extractor and train sim-
ple linear classi�ers on emotion datasets and measure the
recognition performance on those datasets. Second, we
evaluate EmotionNet on zero-shot learning. Finally, we
compare qualitatively between the features from Emotion-
Net and another generic feature extraction network for the
task of image retrieval.

5.1. Network and implementation details

We use ResNet50, a residual network with 50 lay-
ers [13], as our backbone network. We initialize the model
with ImageNet pretrained weights and continue to train on
StockEmotion for 30 epochs using stochastic gradient de-
scent with a mini batch size of 256, learning rate 0.001,
momentum 0.9, and weight decay10� 5. We reduce the
learning rate by a factor of 10 at epochs 10 and 20. When
training converges, top-1 prediction accuracy for the 690
emotional categories on the test set stabilizes around 50%.
Our experiments suggest that Emotion-Net models trained
from scratch on StockEmotion achieve similar accuracy val-
ues, but their training takes longer to converge.

The TextCNNmodel was trained following [18] using
AdaGrad with an initial learning rate of 1 and dropped by
a factor of 10 every 10 epochs for 30 epochs. We used the
publicly availableword2vec[30] trained with GoogleNews
to generate word embeddings. We also experimented with
word2vecembeddings learned from our dataset by regard-
ing the keyword list associated with each image as a sen-
tence but no improvement was observed.

5.2. Evaluation of learned image features

We evaluate the learned features by using them for emo-
tion category prediction tasks de�ned by other emotion
datasets. We use ResNet50 trained on StockEmotion to
extract image features. The extracted features are used as
is, without any �ne-tuning on the target task datasets. We
use simple linear classi�ers for emotion category prediction
in order to demonstrate the utility of the visual features re-
turned by EmotionNet.

Evaluation Protocol. We freeze all the layers of Emotion-
Net and replace the last fully-connected layer with a new
one that projects the learned features to the output cate-



DE [52] UBE [33] AffectNet [32] SE30K8 EMTIC-B [21] EMTIC-I [21]
Metric Accuracy mAP
Previous SOTA 61.13 [33] 74.30 [33] 57.31[54] - 25.44 [21] 22.48 [21]
ResNet-50 58.30 60.26 40.17 52.52 24.34 26.03
EmotionNet 65.81 81.45 53.43 69.78 29.24 30.96

Table 2: Emotion detection performance on multiple emotion datasets: A simple linear classi�er trained with the Visual
features learned on StockEmotion surpasses SOTA results on four of the �ve datasets. Our proposed unsupervised text
regularization method provides minor modest additional gains.

gories of the target dataset. We train the last layer alone on
the target dataset. The trainable fully connected layer con-
tains 12K to 60K parameters, depending on various number
of categories. For all the datasets, we use the same training
hyper-parameters as [33].

Datasets.We evaluate on the following datasets:
DeepEmotion[52] uses eight emotions derived from a

recent psychological study [29]. It has 23K images col-
lected from Flicker and Instagram that were annotated by
Amazon Mechanical Turk workers. We followed the ex-
periment set up for the emotion recognition task in [33] in
which the authors used 80% of the 23K images for training
and the remaining 20% for testing.

UnBiasedEmotion[33] contains 3000 images down-
loaded from Google with different emotions for the same
objects to reduce object bias. Each image is labeled with
one of six emotional categories. We follow the evaluation
setup in [33].

EMOTIC [21] consists of a mixture of images from
MSCOCO [23], Ade20k [55], and images that were man-
ually downloaded using Google search. The dataset is a
collection of images of people in real environments and in-
cludes annotations of their apparent emotions drawn from
a set of 26 emotion categories. It includes 18,316 images
with a total of 23,788 annotations. We report performance
of our models on both cases denoted as EMOTIC-B(ody)
and EMOTIC-I(mage). We follow training and evaluation
procedures used in [21].

AffectNet[32] contains around 400K annotated facial
images, each labeled by a single coder. It includes 5K la-
beled images in 10 categories as the validation set. Fol-
lowing [53], we selected around 280K images as training
samples and 3.5K images for validation. The labels include
six basic emotions and a neutral category. For ef�ciency,
in each training epoch, we sample 30K images uniformly at
random covering the seven categories and trained the �nal
fully connected layer for 10 epochs.

SE30K8is the manually annotated subset of our StockE-
motion dataset as described in Sec. 3.3. We use a randomly
selected subset of 22K images as training samples and 3K
for validation. We test on 5K images. We again follow the
evaluation setup in [33].

The datasets listed above are diverse in terms of image

sources, emotion categories, and exhibiting locations. The
emotion conveyed in an image could be inferred from the
expression on a face, or the pose of a human body, or from
the overall scene.

Comparison methods and results. We directly compare
to previous state-of-the-art algorithms on each dataset: [33]
achieves state-of-the-art performance on DeepEmotion [52]
and UnBiasedEmotion [33] using curriculum training algo-
rithms. Kosti et al. [21] report state-of-the-art performance
on EMOTIC [21] by combining both categorical and con-
tinuous emotion information. Zeng et al. [53] report best
performance on [32] by training on multiple datasets and
automatically �ltering inconsistencies. Compared to these
methods, ours model is relatively simpler, a linear classi-
�er on top of the visual emotion features from EmotionNet.
To establish the utility of visual emotion features over gen-
eral purpose image features, we also compare with features
from a generic feature extractor ResNet-50 pre-trained on
ImageNet.

The results in Tab. 2 show that: (1) the classi�ers trained
using the features from EmotionNet outperform four of the
�ve previous state-of-the art algorithms; and (2) the features
from ResNet-50, a network trained for object recognition
(ImageNet), are not useful for emotion prediction.

Dataset

Method DE UBE AffectNet EMTIC-B EMTIC-I

EmotionNet 65.81 81.45 53.43 29.24 30.96

+ Extra anno. 65.53 81.45 53.69 28.98 30.99
� Soft loss 64.76 80.13 52.66 28.61 30.66
� Embed loss 65.85 80.29 52.71 28.74 30.83
� Embed & Soft 65.29 78.98 52.51 28.58 30.52

Table 3:Ablation experiment. Training EmotionNet with
extra annotation does not necessarily help. Both the soft-
label classi�cation loss and the joint text-visual embedding
loss are important.

5.3. Ablations studies

We conduct ablation studies to further understand the
values of the StockEmotion dataset and the components of
EmotionNet.



Bene�ts of extra supervision. Can we improve the perfor-
mance of EmotionNet with extra supervision? To answer
this question, we perform an experiment where we also
train EmotionNet on SE30K8, a subset of the StockEmotion
dataset with human annotation for eight basic emotions. We
�rst train a text-based classi�er that predicts the eight emo-
tion categories from a list of keywords. The representation
produced by this text-classi�er is an alternate view of the
emotion conveyed by the image. We use it to guide the
learning of the visual embedding network, forcing the trans-
formed feature vector to be compatible with the 8-emotion
embedding feature vector. Further details on this setup can
be found in the supplementary material. Tab. 3 compares
the performance of EmotionNet trained with and without
extra supervision. As can be seen, adding extra supervision
does not provide consistent bene�ts. The extra supervision
provides minor gains in two out of �ve cases, while slightly
degrades performance in the others. This can be attributed
to the limited size of the extra annotation (only 30K) or
to the small number of emotion categories (only 8). In ei-
ther case, it is time-consuming and costly to either increase
the number of manually annotated images or the number of
manually speci�ed annotations. On the other hand, Emo-
tionNet trained on our webly derived StockEmotion dataset
does not suffer from these scalability issues.

Bene�ts of different loss functions. In addition to the orig-
inal loss associated with predicting the emotion keywords
that come with the images, EmotionNet is also trained with
an embedding loss, which aims to minimize the distance
between the visual representation and the textual represen-
tation of the associated tags and asoft label loss. The soft
label loss refers to the difference between the label distribu-
tion predicted by EmotionNet and the emotion probabilities
predicted by the text-to-emotion classi�er. Tab. 3 shows
the ablation study where we evaluate the contribution of the
soft-label classi�cation loss and the embedding loss. As
can be seen, removing either or both of these loss terms de-
grades performance.

Bene�ts of a large emotion taxonomy. StockEmotion has
690 emotion categories. We perform experiments to under-
stand the bene�ts of having such a large number of cate-
gories. We consider two variants of the feature extraction
network, trained with different supervision signals: (1) Use
the full set of 30K keywords, rather than using just the 690
emotion related keywords, for training the feature extractor.
(2) Use only eight basic emotion categories. We �rst learn
a text classi�er that predicts the eight emotion categories
given image keywords as input. We train this classi�er on
the 30K images of SE30K8 and use it to predict emotion
categories for rest of StockEmotion. We use these predicted
labels as emotion pseudo-labels for the images (since the
image keywords often contain clear indicators of emotion,
this pseudo-labeling is of high accuracy, yielding up to 90%

in top-2 accuracy). We then train the image feature extractor
to predict these emotion pseudo-labels.

Tab. 4 compares the performance of the feature extrac-
tion networks trained with different sets of emotion key-
words or labels. As can be seen, the feature extraction net-
work trained with 30K labels is substantially worse than the
network trained with emotion-related keywords alone, ei-
ther with 690 or 8 emotions. This suggests the bene�ts of
focusing on the emotion-related concepts. The feature ex-
traction network trained with 8 emotion labels is not as good
as the network trained with 690 emotions. This indicates the
bene�ts of having a �ne-grained list of emotion categories.

Dataset

# categories DE UBE AffectNet EMTIC-B EMTIC-I

8 64.20 78.96 45.57 28.13 29.54
30K 63.41 74.54 46.57 27.60 28.96
690 65.29 78.98 52.51 28.58 30.52

Table 4: Ablation Experiment . Performance of different
feature extraction networks trained on the same set of im-
ages but with different number of annotation categories.

Bene�ts of a large scale datasetWe further investigate the
effect of dataset size on emotion recognition tasks by train-
ing feature extractors on subsets of StockEmtion. More
speci�cally, we still �x the number of categories to be 690
but the number of examples are reduced by random sam-
pling. As shown in Tab. 5, accuracy on the UnBiasedEmo-
tion classi�cation task increases as more images are used for
training, but the absolution improvements decreases. This
trend is similar to previous studies [16, 26] on the impact of
dataset size for object recognition problems.

% of StockEmotion 10 25 50 75 100

Accuracy 52.45 66.34 72.24 76.63 78.98

Table 5:Ablation Experiment . Performance of feature ex-
tractors trained with various subsets of StockEmotion on
UnBiasedEmotion (UBE) dataset.

For all experiments thus far, we used the publicly avail-
ableword2vectrained with GoogleNews to generate word
embeddings. We also experimented withword2vec[30] em-
beddings learned from our dataset and variants of the text
classi�cation model [18], but there were no signi�cant im-
provements. We report these detailed experiments in the
supplementary material.

5.4. ZeroShot Learning Performance

EmotionNet is trained with both classi�cation and joint
vision-text embedding losses. One bene�t of this approach
is that the feature vectors returned by EmotionNet can be



Figure 4: Two examples of images retrieved using nearest neighbour search. For each example, Left: query images and their
emotion keywords. Top: returned by ImageNet features search. Bottom: returned by features trained from StockEmotion
dataset.

used for zero-shot learning, given the ability to map the im-
age features into the same space as the text features. We
evaluate EmotionNet for zero-shot learning on the EMOTIC
dataset [21], in which each of the 26 emotion categories
comes with a brief textual description. We create a repre-
sentation for each of these categories in the text emotion
space by processing the emotion keywords mentioned in
their descriptions through the aforementioned text-to-eight-
emotion classi�er. To classify any image, we �rst use the
text distillation model to produce a representation of the im-
age in the text emotion space. We then score each category
based on its cosine similarity to the representation of the
image in the text emotion space.

Results in Tab. 6 show that zero-shot learning us-
ing EmotionNet gets close to the fully supervised SOTA
method on EMOTIC-B and outperforms the SOTA method
on EMOTIC-I. Note that in these experiments, we do not
perform any training on the EMOTIC dataset. The results
show the strong generalizability of EmotionNet and the rep-
resentations learned on the StockEmotion dataset.

Method EMOTIC-B EMOTIC-I

Previous SOTA 25.44 22.48
EmotionNet 23.29 24.24

Table 6: Zero-Shot Learning results on EMOTIC

5.5. Image Retrieval and Qualitative Results
The feature representations produced by EmotionNet

can be used to �nd images with similar emotion content.
Given a query image, we can retrieve the nearest neighbors
to the query in the emotion feature space. Fig. 4 compares
the performance of ImageNet and EmotionNet features for
image retrieval. The �gure shows four query examples on
the left. The images on the right are the nearest neighbors
obtained by either ImageNet features (top row) or Emotion-

Net features (bottom row). As can be seen, ImageNet fea-
tures return nearest neighbors that have relevant object cat-
egories but unrelated emotion attributes. For example, for
the query image on the bottom left, none of the images re-
turned by ImageNet features conveys the emotionhorror. In
contrast, using EmotionNet features, we can retrieve other
horror images.

6. Conclusion
Advances in many computer vision tasks have been built

on top of large scale datasets such as ImageNet. Such large
datasets enable learning effective representations that are
transferable to a variety of downstream tasks. In this work,
we introduced a scalable method for acquiring a large-scale
image dataset with rich emotion related tags. Using this
method, we created EmotionStock, a dataset with more than
a million images and 690 emotion-related keywords. We
also proposed text-based distillation methods to mitigate the
problem of label noise, creating EmotionNet, a general fea-
ture extraction network for emotion content. Experiments
on a number of datasets showed that EmotionNet is use-
ful for various downstream emotion analysis tasks, includ-
ing emotion recognition, zero-shot learning, and image re-
trieval.
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