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Abstract

Correspondences between frames encode rich informa-
tion about dynamic content in videos. However, it is chal-
lenging to effectively capture and learn those due to their
irregular structure and complex dynamics. In this paper,
we propose a novel neural network that learns video repre-
sentations by aggregating information from potential corre-
spondences. This network, named CPNet, can learn evolv-
ing 2D fields with temporal consistency. In particular, it
can effectively learn representations for videos by mixing
appearance and long-range motion with an RGB-only in-
put. We provide extensive ablation experiments to validate
our model. CPNet shows stronger performance than exist-
ing methods on Kinetics and achieves the state-of-the-art
performance on Something-Something and Jester. We pro-
vide analysis towards the behavior of our model and show
its robustness to errors in proposals.

1. Introduction

Video modality can be viewed as a sequence of images
evolving over time. A good model for learning video rep-
resentations should be able to learn from both the static ap-
pearance of images as well as the dynamic change of im-
ages over time. The dynamic nature of video is described
by temporal consistency, which says an object in one frame
usually has its correspondence in other frames and its se-
mantic features are carried along the way. Analysis of these
correspondences, either fine-grained or coarse-grained, can
lead to valuable information for video recognition, such as
how objects move or how viewpoints changes, which can
further benefit high-level understanding tasks such as action
recognition and action prediction.

Unlike static images where there is a standard represen-
tation learning approach of convolutional neural networks
(CNNs), the correspondence of objects in videos has en-
tirely different pattern and is more challenging to learn.
For example, the corresponding objects can be arbitrarily
far away, may deform or change their pose, or may not
even exist in other frames. Previous methods rely on op-
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Figure 1: We view video representation tensor as a point cloud of
features with T ×H ×W points. For each point (e.g. the purple
point), its k potentially corresponding points are the k-NN in C-
dimensional semantic space from other frames. Our CP module
will learn and aggregate all these potential correspondences.

erations within a local neighborhood (e.g. convolution) or
global feature re-weighting (e.g. non-local means) for inter-
frame relation reasoning thus cannot effectively capture cor-
respondence: stacking local operations for wider coverage
is inefficient or insufficient for long-range correspondences
while global feature re-weighting fails to include positional
information which is crucial for correspondence.

In this paper, we present a novel method of learning rep-
resentations for videos from correspondence proposals. Our
intuition is that, the corresponding objects of a given object
in other frames typically only occupy a limited set of re-
gions, thus we need to focus on those regions during learn-
ing. In practice, for each position (a pixel or a feature), we
only consider the few other positions that is most likely to
be the correspondence.

The key of our approach is a novel neural network mod-
ule for video recognition named CP module. This module
views the video representation tensor as a point cloud in
semantic space. As illustrated in Figure 1, for every fea-
ture in video representation, the module finds and groups its
k nearest neighbors in other frames in the semantic space
as potential correspondence. Each of the k feature pairs
is processed identically and independently by a neural net-
work. Then max pooling is applied to select the strongest
response. The module effectively learns a set of functions
that embeds and selects the most interesting information
among the k pairs and encode the reason for such selection.
The output of CP module is the encoded representation of
correspondence, i.e. dynamic component in videos, and can
be used in subsequent parts of an end-to-end architecture
and other applications.
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Figure 2: CP module architecture. Gray boxes denote tensors, white boxes denote operators and orange boxes denote neural networks with
trainable weights. The dashed box represents the Correspondence Embedding layer, whose architecture is illustrated in detail in Figure 3.

Ordered spatiotemporal location information is included
in the CP module so that motion can be modelled. We inte-
grate the proposed CP module into CNN so that both static
appearance feature and dynamic motion feature of videos
are mixed and learned jointly. We name the resulting deep
neural network CPNet. We constructed a toy dataset and
showed that CPNet is the only RGB-only video recogni-
tion architecture that can effectively learn long-range mo-
tion. On real datasets, we show the robustness of the max
pooling in CP module: it can filter out clearly wrong corre-
spondence proposals and only select embeddings from rea-
sonable proposals.

We showcase CPNet in the application of video classi-
fication. We experimented with it on action recognition
dataset Kinetics [16] and compared it against existing meth-
ods. It beats previous methods and achieves leading per-
formance. It also achieves state-of-the-art results among
published methods on action-centric datasets Something-
Something [10] and Jester [28] with fewer parameters. We
expect that our CPNet and the ideas behind it can benefit
video applications and research in related domains.

2. Related Work

Representation Learning for Videos. Existing ap-
proaches of video representation learning can generally be
categorized by how dynamic component is modelled. The
first family of approaches extract a global feature vector for
each frame with a shared CNN and use recurrent neural nets
to model temporal relation [4, 34]. Though recurrent ar-
chitectures can efficiently capture temporal relations, it is
harder to train and results in low performance on the latest
benchmarks. The second family of approaches learn dy-
namic changes from offline-estimated optical flow [25, 3]
or online learned optical flow [6] with a separate branch of
the network. The optical flow branch may share the same
architecture as the static appearance branch. Though optical
flow field bridges consecutive frames, the question of how
to learn multiple evolving 2D fields is still not answered.

The third family of approaches use single-stream 3D
CNN with RGB-only inputs and learn dynamic changes
jointly and implicitly with static appearance [26, 2, 27, 15,

30, 38]. These architectures are usually built with local op-
erations such as convolution so cannot learn long-range de-
pendencies. To address this problem, non-local neural nets
(NL Nets) [31] was proposed. It adopted non-local opera-
tions where features are globally re-weighted by their pair-
wise feature distance. Our network consumes RGB-only in-
puts and explicitly computes correspondence proposals in a
non-local fashion. Different from NL Net, our architecture
focuses on only top correspondences and considers pairwise
positional information, thus it can effectively learn not only
appearance but also dynamic motion features.

Deep Learning on Unstructured Point Data. The pi-
oneering work of PointNet [21] proposed a class of deep
learning methods on unordered point sets. The core idea is
a symmetric function constructed with shared-weight deep
neural networks followed by an element-wise max pooling.
Due to the symmetry of pooling, it is invariant to the order
of input points. This idea can also be applied to learning
functions on generic orderless sets [35]. Follow-up work
of PointNet++ [22] extracts local features in local point sets
within a neighborhood in the Euclidean space and hierarchi-
cally aggregates features. Dynamic graph CNN [32] pro-
posed similar idea, the difference is that the neighborhood
is determined in the semantic space and the neural network
processes point pairs instead of individual points. Inspired
by these works, we treat correspondence candidates as an
unordered set. Through a shared-weight MLP and max
pooling, our network will learn informative representations
about appearance and motion in videos.

Deep Learning for Correspondence and Relation
Reasoning. Capturing relation is an essential task in com-
puter vision and machine learning. A common approach to
learn relation is letting extracted feature interact through a
designed or learned function and discover similarity from
the output. This is the general idea behind previous works
on stereo matching [29, 36] and flow estimation [5, 13, 19].
The learned relation can also be used later in learning high-
level semantic information such as video relational reason-
ing [37] and visual question answering [24]. Compared to
these works, we focus on learning video representation from
long-range feature correspondences over time and space.
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Figure 3: Correspondence Embedding layer architecture. f ij s are semantic vectors with length C and the ij-th row of input THW × C
feature tensor. gi0 is a semantic vector with length C′ and the i0-th row in the output THW × C′ feature tensor. We made C′ = C so
that the output can be added back to the main stream CNN. tij , hij , wij are the spatiotemporal normalized locations.

3. Learning Correspondence Proposals

Our proposed method is inspired by the following three
properties of correspondences in videos:

1. Corresponding positions have similar visual or se-
mantic features. This is the assumption underlying many
computer vision tasks related to correspondence, such as
image matching, relation reasoning or flow estimation.

2. Corresponding positions can span arbitrarily long
ranges, spatially or temporally. In the case of fast motion
or low frame rate, displacements along spatial dimensions
can be large within small frame steps. Objects that disap-
pear and then re-appear in videos across a long time can
span arbitrarily long temporal range.

3. Potential correspondence positions in other frames
are small in percentage. Given a pixel/feature, usually
only very small portion of pixels/features in other frames
could be the potential correspondence. Other apparently
dissimilar pixels/features can be safely ignored.

A good video representation model should at least ad-
dress the above three properties: it should be able to capture
potential pixel/feature correspondence pairs at arbitrary lo-
cations and learn from the pairs. It poses huge challenges to
the design of the deep architecture, since most deep learning
methods work on regular structured data. Inspired by recent
work on deep learning on point clouds [21, 22, 32] and their
motion [19], we develop an architecture that addresses the
above three properties.

In this section, we first briefly review point cloud deep
learning techniques and their theoretical foundations. Then
we explain Correspondence Proposal (CP) module, the core
of our architecture. Finally we describe how it is integrated
into the entire deep neural network architecture.

3.1. Review of Point Cloud Deep Learning

Qi et al. [21] recently proposed PointNet, a neural net-
work architecture for deep learning in point clouds. Its the-
oretical foundation was proven in [21]: given a set of point
clouds X ⊆ {{x1, x2, . . . , xn} | n ∈ Z+, xi ∈ [0, 1]d} and
any continuous set function f : X → Rc w.r.t Hausdorff
distance, symmetric function g : X → Rc

g(x1, x2, . . . , xn) = γ ◦MAX{ζ(x1), ζ(x2), . . . , ζ(xn)}

can arbitrarily closely approximate f onX , where ζ : Rd →
Rr and γ : Rr → Rc are two continuous functions and
MAX is the element-wise maximum operation. In prac-
tice, ζ and γ are instantiated to be multi-layer perceptron
(MLP) as learnable functions with universal approximation
potential. The symmetry of max pooling ensures the output
to be invariant to the ordering of the points.

While PointNet was originally proposed to learn geomet-
ric representation for 3D point clouds, it has been shown
that the MLP can take mixed types of modalities as input to
learn other tasks. For example, the MLP can take learned
geometric representation and displacement in 3D Euclidean
space as input to estimate scene flow [19].

3.2. CP Module

In this subsection, we explain the architectures of CP
module. As illustrated in Figure 2, the input and output to
CP module are both video representation tensors with shape
THW×C, where T denotes the number of frames,H×W
denotes the spatial dimension and C denotes the number of
channels. CP module treats the input video tensor as a point
cloud of features with THW points and accomplishes two
tasks: 1) k-NN grouping; 2) correspondence embedding.

k-NN grouping. For each feature in the video represen-
tation tensor output by a CNN, CP module selects its k most
likely corresponding features in other frames. The selection
is solely based on semantic similarity to ensure correspon-
dence can be across arbitrarily long spatiotemporal ranges.
Features within the same frame are excluded because tem-
poral consistency should be between different frames.

The first step is to calculate the semantic similarity of
all features point pairs. We use the negative L2 distance
as our similarity metric. It can be done efficiently with
matrix multiply operations and produces a matrix of shape
THW × THW . The next step is to set the values of
the elements in the T diagonal block matrices of shape
HW × HW to be −∞. With this operation, the features
within the same frame will be excluded from potential cor-
respondences of each other. The final step is to apply an arg
top-k operation along the row dimension of the matrix. It
outputs a tensor of shape THW ×k, where the i-th row are
the indices of the k nearest neighbors of the feature i. The
workflow is shown in Figure 2.



Correspondence Embedding layer. The goal of this
layer is for each feature, learn a representation from its pro-
posed correspondences. The features’ motion to their cor-
responding position in other frames can be learned during
this process. The top-1 correspondence candidate can only
give the information from one frame so it cannot capture
the full correspondence information of the entire video. Be-
sides, there may be more than one qualified correspondence
candidates in a frame. So we use a larger k, process k pairs
identically and independently, aggregate information from
k outputs. This is the general idea behind Correspondence
Embedding layer, the core of our CP module.

Correspondence Embedding layer is located in the
dashed box of Figure 2 and illustrated in detail in Figure
3. Suppose the spatiotemporal location and semantic vec-
tor of input feature i0 is (ti0 , hi0 , wi0 , f i0), its j-th k-NN is
(tij , hij , wij , f ij ) where j ∈ {1, 2, . . . , k}. For each of the
k pairs, we pass the semantic vectors of two features, i.e.
f i0 , f ij ∈ RC , and their relative spatiotemporal displace-
ments, i.e. [tij − ti0 , hij −hi0 , wij −wi0 ] ∈ R3, to an MLP
with shared weights. All three dimensions of the spatiotem-
poral locations, i.e. tij , hij , wij ∈ R, are normalized to
[0, 1] from [0, T ), [0, H) and [0,W ) before sent into MLP.
Then the k outputs are aggregated by an element-wise max
pooling operation to produce gi0 ∈ RC , the semantic vector
of output feature i0. During the process, the most informa-
tive signals about correspondence, i.e. entangled represen-
tation from mixing displacement and two semantic vectors,
can be selected from k pairs and the output will implicitly
encode motion information. Mathematically, the operation
of Correspondence Embedding layer can be written as:

gi0 = MAX
j∈{1,2,...,k}

{ζ(f i0 , f ij , tij−ti0 , hij−hi0 , wij−wi0)}

(1)
where ζ is the function computed by MLP and MAX is
element-wise max pooling.

There are other design choices for Correspondence Em-
bedding layer as well. For example, instead of sending both
features directly to the MLP, one can first compute a cer-
tain distance between two features. However, as discussed
in [19], sending both features into MLP is a more general
form and yields better performance in motion learning.

3.3. Overall Network Architecture

Our CP module are inserted into CNN architecture and
are interleaved with convolution layers, which enables the
static image features extracted from convolution layers and
correspondence signals extracted from CP module be mixed
and learned jointly. Specifically, the CP modules are in-
serted into the ResNet [12] architectures and is located right
after a residual block but before ReLU. We initialize the
convolution part of our architecture with a pre-trained Im-
ageNet model. The MLPs in CP modules are randomly

Table 1: Architectures for toy experiment

layer
I3D NL
Net [31]

ARTNet
[30]

TRN
[37]

C2D CPNet
(ours)

conv1 3× 3× 1,16 3× 3× 3,16 3× 3× 1,16 3× 3× 1,16
NL block - - CP module

conv2
1× 1× 3,16
3× 3× 1,16

SMART-
3× 3× 3,16

3× 3× 1,16 3× 3× 1,16

pooling,
fc

pooling,
fc

pooling, temporal
relation, fc

pooling,
fc

train 27.8 26.8 27.1 97.9
val 26.4 25.9 26.9 97.4

Figure 4: An “up” example in our toy dataset.

initialized with MSRA initialization [11], except for the
gamma parameter of the last batch normalization layer [14]
being initialized with all zeros. This ensures identity map-
ping at the start of training so pre-trained model can be used.

In this paper, we only explore CP modules with k near-
est neighbors in other frames in L2 semantic space. In gen-
eral, however, the nearest neighbors of CP modules can be
determined in other metric space as well, such as temporal-
only space, spatiotemporal space or joint spatiotemporal-
semantic space. We call such convolutional architecture in-
serted with generic CP module as CPNet.

4. A Failing of Several Previous Methods
We constructed a toy video dataset where previous RGB-

only methods fail in learning long-range motion. Through
this extremely simple dataset, we show the drawbacks of
previous methods and the advantage of our architecture.

The dataset consists of videos of a 2 × 2 white square
moving on a black canvas. The videos have 4 frames and
the spatial size is 32 × 32. There are four labels of the
moving direction of the square: “left”, “right”, “up” and
“down”. The square’s moving distance per step is random
between 7 and 9 pixels. The dataset has 1000 training and
200 validation videos, both have an equal number of videos
for each label. Figure 4 illustrated an example of videos in
our dataset.

We inserted the core module of several previous RGB-
only deep architectures for video recognition, i.e. I3D NL
Net [31], ARTNet [30], TRN [37], as well as our CPNet,
into a toy CNN with two 3 × 3 convolution layers. We
listed the architectures used this experiment in Table 1. The
convolution parts of all models have small spatial receptive
fields of 5 × 5. The dataset-model settings are designed to
simulate long-range motion situations where stacking con-
volution layers to increase receptive field is insufficient or
inefficient. No data augmentation is used.



Table 2: Architectures used in Kinetics experiments in Table 3(d).

layer output size C2D
baseline

CPNet (Ours)
6 CP modules

conv1 56× 56× 8
7× 7, 64,

stride 2, 2(, 1)
7× 7, 64
stride 2, 2

res2 56× 56× 8

[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 2

res3 28× 28× 8

[
3× 3, 128
3× 3, 128

]
× 2

3× 3, 128
3× 3, 128
CP module

× 2

res4 14× 14× 8

[
3× 3, 256
3× 3, 256

]
× 2

3× 3, 256
3× 3, 256
CP module

× 2

res5 7× 7× 8

[
3× 3, 512
3× 3, 512

]
× 2

3× 3, 512
3× 3, 512
CP module

× 2

1× 1× 1 global average pooling, fc 400

The training and validation results are listed in Table 1.
Our model can overfit the toy dataset, while other models
simply generate random guesses and fail in learning the mo-
tion. It’s easy to understand that ARTNet and TRN have
insufficient convolution receptive fields to cover the step of
the motion of the square. However, it’s intriguing that NL
Net, which should have a global receptive field, also fails.

We provide an explanation as follows. Though the toy
NL Net gets by the problem of insufficient convolution re-
ceptive fields, its NL block fails to include positional in-
formation thus can’t learn long-range motion. However,
it’s not straightforward to directly add pairwise positional
information to NL block without significantly increasing
the memory and computation workload to an intractable
amount. Through this experiment, we show another ad-
vantage of our CPNet: by only focusing on top k potential
correspondences, memory and computation can be saved
significantly thus allow positional information and semantic
feature be learned together with more a complicated method
such as a neural network.

5. Experiment Results
To validate the choice of our architecture for data in the

wild, we first did a sequence of ablation studies on Kinet-
ics dataset [16]. Then we re-implemented several recently
published and relevant architectures with the same dataset
and experiment settings to produce results as good as we
can and compare with our results. Next, we experiment
with very large models and compare with the state-of-the-
art methods on Kinetics validation set. Finally, we did ex-
periments on action-centric datasets Something-something
v2 [10] and Jester v1 [28] and report our results on both val-
idation and testing sets. Visualizations are also provided to
help the understanding of our architecture.

5.1. Ablation Studies

Kinetics [16] is one of the largest well-labelled datasets
for human action recognition from videos in the wild. Its

classification task involves 400 action classes. It con-
tains around 246,000 training videos and 20,000 validation
videos. We used C2D ResNet-18 as backbone for all ab-
lation experiments. The architectures we used are derived
from the last column of Table 2. We included C2D baseline
for comparison. We downsampled the video frames to be
only 1/12 of the original frame rate and used only 8 frames
for each clip. This ensures that the clip duration are long
enough to cover a complete action while still maintain fast
iteration of experiment. The single-clip single-center-crop
validation results are shown in Table 3(a)(b)(c).

Ablation on the Number of CP modules. We explored
the effect of the number of CP modules on the accuracy.
We experimented with adding one or two CP modules to
the res4 group, two CP modules to each of res3 and res4
groups, and two CP modules to each of res3, res4 and res5
groups. The results are shown in Table 3(a). As the number
of CP modules increases, the accuracy gain is consistent.

Ablation on k. We explored the the combination of
training-testing time k values and compared the results in
Table 3(b). When ks are the same during training and test-
ing, highest validation accuracy are achieved. It suggests
that using different k forces the architecture to learn dif-
ferent distribution and highest accuracy are achieved only
when training and test distribution are similar.

We also notice that the highest accuracy are achieved at a
sweet point when both k = 8. An explanation is that when
k is too small, CP module can’t get enough correspondence
candidates to select from; when k is too large, clearly unre-
lated elements are also included and introduce noise.

Ablation on the position of CP modules. We explored
effect of the position of CP modules. We added two CP
modules to three different groups: res3, res4 and res5, re-
spectively. The results are shown in Table 3(c). The high-
est accuracy are achieved when adding two CP modules to
res4 group. A possible explanation is that res3 doesn’t con-
tain enough semantic information for finding correct k-NN
while resolution of res5 is too low (7× 7).

5.2. Comparison with Other Architectures

We compare our architecture with C2D/C3D baselines,
C2D NL Networks [31] and ARTNet [30], on Kinetics. We
did two sets of experiments, with frame rate downsampling
ratio of 12 and 4 respectively. Both experiment sets used
8 frames per clip. The settings enable us to compare the
performance under both low and high frame rates. The ar-
chitecture used in the experiments are illustrated in Table 2.
We experimented with two inference methods: 25-clip 10-
crop with averaged softmax score as in [30] and single-clip
single-center-crop. The results are shown in Table 3(d).

Our architecture outperforms C2D/C3D baselines by a
significant margin, which proves the efficacy of CP mod-
ule. It also outperforms NL Net and ARTNet given fewer



Table 3: Kinetics datasets results for ablations and comparison with other prior works. The top-1/top-5 accuracies are shown.

(a) number of CP modules

model top-1 top-5
C2D 56.9 79.5
1 CP 60.3 82.4
2 CPs 60.4 82.4
4 CPs 61.0 83.1
6 CPs 61.1 83.1

(b) Ablation on CP module’s k values used in training and testing time.

top-1/top-5
accuracy

test
k = 1 k = 2 k = 4 k = 8 k = 16 k = 32

train

k = 1 59.9/82.3 59.2/81.6 56.6/79.4 52.5/76.1 49.0/72.6 44.6/58.5
k = 2 59.1/81.8 60.2/82.5 59.6/81.8 56.9/80.1 53.0/77.1 48.9/73.5
k = 4 59.0/81.2 60.2/82.4 60.5/82.6 59.0/81.7 55.3/79.2 49.2/73.5
k = 8 53.4/76.3 56.8/79.5 59.6/81.9 60.7/82.8 59.7/82.1 57.0/80.3
k = 16 51.3/75.1 53.8/77.3 56.8/79.7 59.8/82.1 60.6/82.8 59.2/81.8
k = 32 52.6/76.6 53.8/77.7 55.5/79.1 58.2/80.8 60.0/82.2 60.4/82.4

(c) CP module positions

model top-1 top-5
C2D 56.9 79.5
res3 60.4 82.4
res4 60.8 82.8
res5 59.2 81.6

(d) Kinetics validation accuracy of architectures in Table 2. Clip length is 8 frames.

frame rate 1/12 of original frame rate 1/4 of original frame rate
val configuration 1-clip, 1 crop 25-clip, 10 crops 1-clip, 1 crop 25-clip, 10 crops
accuracy top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
C2D 56.9 79.5 61.3 83.6 54.1 77.4 60.8 83.3
C3D [26] 58.3 80.7 64.4 85.8 55.0 78.5 63.3 85.2
NL C2D Net [31] 58.6 81.3 63.3 85.1 55.3 78.6 62.1 84.2
ARTNet [30] 59.1 81.1 65.1 86.1 56.1 78.7 64.2 85.6
CPNet (Ours) 61.1 83.1 66.3 87.1 57.2 80.8 64.9 86.5

Table 4: Large RGB-only models on Kinetics validation accuracy.
Clip length for NL Net and our CPNet is 32 frames.

model params (M) top-1 top-5
I3D Inception [2] 25.0 72.1 90.3
Inception-ResNet-v2 [1] 50.9 73.0 90.9
NL C2D ResNet-101 [31] 48.2 75.1 91.7
CPNet C2D ResNet-101 (ours) 42.1 75.3 92.4

parameters, further showing the superiority of our CPNet.

5.3. Large Models on Kinetics

We train a large model with C2D ResNet-101 as back-
bone. We applied three phases of training where we pro-
gressively increase the number of frames in a clip from 8
to 16 and then to 32. We freeze batch normalization layers
starting the second phase. During inference, we use 10-clip
in time dimension, 3-crop spatially fully-convolutional in-
ference. The results are illustrated in Table 4.

Compared with large models of several previous RGB-
only architectures, our CPNet achieves higher accuracy
with fewer parameters. We point out that Kinetics is an
appearance-centric dataset where static appearance infor-
mation dominates the classification. We will show later
that our CPNet has larger advantage on other action-centric
datasets where dynamic component more important.

5.4. Results on Something-Something

Something-Something [10] is a recently released dataset
for recognizing human-object interaction from video. It
has 220,847 videos in 174 categories. This challenging
dataset is action-centric and especially suitable for eval-
uating recognition of motion components in videos. For
example its categories are in the form of ”Pushing some-

thing from left to right”. Thus solely recognizing the object
doesn’t guarantee correct classification in this dataset.

We trained two different CPNet models with ResNet-18
and -34 C2D as backbone respectively. We applied two
phases of training where we increase the number of frames
in a clip from 12 to 24. We freeze batch normalization
layers in the second phase. The clip length are kept to
be 2s 1. During inference, we use 6-crop spatially fully-
convolutional inference. We sample 16 clips evenly in tem-
poral dimension from a full-length video and compute the
averaged softmax scores over 6 × 16 clips. The results are
listed in Table 5(a).

Our CPNet model with ResNet-34 backbone achieves
the state-of-the-art results on both validation and testing ac-
curacy. Our model size is less than half but beat Two-stream
TRN [37] by more than 2% in validation accuracy and more
than 1% testing accuracy. Our CPNet model with ResNet-
18 also achieves competing results. With fewer than half
parameters, it beats MultiScale TRN [37] by more than 5%
in validation and more than 2% in testing accuracy. Be-
sides, we also showed the effect of CP modules by com-
paring against respective ResNet C2D baselines. Although
parameter size increase due to CP module is tiny, the vali-
dation accuracy gain is significant (>14%).

5.5. Results on Jester

Jester [28] is a dataset for recognizing hand gestures
from video. It has 148,092 videos in 27 categories. This
dataset is also action-centric and especially suitable for
evaluating recognizing motion components in video recog-
nition models. One example of its categories is ”Turn-
ing Hand Clockwise”: solely recognizing the static gesture

1There are space for accuracy improvement when using 48 frames.



Table 5: TwentyBN datasets results. Our CPNet outperforms all published results, with fewer number of parameters.

(a) Something-Something v2 Results

model
params val test

(M) top-1 top-5 top-1 top-5
Goyal et al. [10] 22.2 51.33 80.46 50.76 80.77
MultiScale TRN [37] 22.8 48.80 77.64 50.85 79.33
Two-stream TRN [37] 46.4 55.52 83.06 56.24 83.15
C2D Res18 baseline 10.7 35.24 64.49 - -
C2D Res34 baseline 20.3 39.64 69.61 - -
CPNet Res18, 5 CP (ours) 11.3 54.08 82.10 53.31 81.00
CPNet Res34, 5 CP (ours) 21.0 57.65 83.95 57.57 84.26

(b) Jester v1 Results

model
params

val test
(M)

BesNet [9] 37.8 - 94.23
MultiScale TRN [37] 22.8 95.31 94.78
TPRN [33] 22.0 95.40 95.34
MFNet [18] 41.1 96.68 96.22
MFF [17] 43.4 96.33 96.28
C2D Res34 baseline 20.3 84.73 -
CPNet Res34, 5 CP (ours) 21.0 96.70 96.56

doesn’t guarantee correct classification in this dataset. We
used the same CPNet with ResNet-34 C2D backbone and
the same training strategy as subsection 5.4. During infer-
ence, we use 6-crop spatially fully-convolutional inference.
We sample 8 clips evenly in temporal dimension from a full-
length video and compute the averaged softmax scores over
6× 8 clips. The results are listed in Table 5(b).

Our CPNet model outperforms all published results on
both validation and testing accuracy, while having the
smallest parameter size. The effect of CP modules is also
shown by comparing against ResNet-34 C2D baselines.
Again, although parameter size increase due to CP module
is tiny, the validation accuracy gain is significant (≈12%).

5.6. Visualization

To understand the behavior of CP module and demystify
why it works, we provide visualization in three aspects with
the datasets used in previous experiments as follows.

What correspondences are proposed? We are inter-
ested to see whether CP module is able to learn to propose
reasonable correspondences purely based on semantic fea-
ture similarity. As illustrated in Figure 5, in general CP
module can find majority of reasonable correspondences.
Due to k being a fixed hyperparameter, its k-NN in seman-
tic space may also include wrong correspondences.

Which of proposed correspondences activate output
neurons? We are curious about CP module’s robustness to
wrong proposals. We trace which of the k proposed corre-
spondence pairs affect the value of output neurons after max
pooling. Mathematically, let gi0c and ζ(i0,ij)c be the dimen-
sion c of gi0 and ζ(f i0 , f ij , tij − ti0 , hij − hi0 , wij −wi0)
from Equation (1) respectively, we are interested in the set

Ai0 = {j ∈ {1, . . . , k} | ∃c ∈ {1, . . . , C}, ζ(i0,ij)c = gi0c }
(2)

associated with a feature i0, where j not being inAi0 means
pair (i0, ij) is entirely overwhelmed by other proposed cor-
respondence pairs and thus filtered by max pooling when
calculating output feature i0. We illustrate Ai0 of several
selected features in Figure 5 and show that CP module is
robust to incorrectly proposed correspondences.

How semantic feature map changes? We show in Fig-
ure 5 the heatmap of change in L1 distance of the semantic
feature map for each frame after going through CP module.
We found that CP modules make more changes to features
that correspond to moving pixels. Besides, CP modules on
a later stage focus more on the moving parts with specific
semantic information that helps final classification.

6. Discussion
6.1. Relation to Other Single-stream Architectures

Note that since the MLPs in CP modules can potentially
learn to approximate any continuous set functions, CPNet
can be seen as a generalization of several previous RGB-
only architectures for video recognition.

CPNet can be reduced to a C3D [26] with kernel size
u × v × w, if we set the k of CP modules to be uvw − 1,
determine the k nearest neighbors in spatiotemporal space
with L1 distance and let the MLP learn to compute inner
product operation within the u× v × w neighborhood.

CPNet can also be reduced to an NL Net [31], if we set
the k of CP modules to be maximum THW − 1 and let the
MLP learn to perform the same distance and normalization
functions as the NL block.

CPNet can also be reduced to a TRN [37], if we put one
final CP module at the end of C2D, determine the k nearest
neighbors in temporal-only space, and let the MLP learn to
perform the same gθ and hφ functions defined in [37].

6.2. Pixel-level Motion vs. Feature-level Motion

In two-stream architectures, motion in pixel level, i.e.
optical flow fields, are first estimated before sent into deep
networks. In contrast, CP modules captures motion in se-
mantic feature level. We point out that, though CP module
process positional information at a lower spatial resolution
(e.g. 14× 14), detailed motion feature can still be captured,
since the semantic features already encode rich information
within the receptive fields [20].

In fact, migrating positional reasoning from the original
input data to semantic representation has contributed to sev-
eral successes in computer vision research. For example, in
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(a) A video clip with label “playing basketball” from Kinetics validation set.
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(b) A video clip with label “Rolling something on a flat surface” from Something-Something v2 validation set.
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(c) A video clip with label “Thumb Up” from Jester v1 validation set.

Figure 5: Visualization on our final models. The starting points of arrows are located at feature i0. Arrows point to the k proposed
correspondences (k = 8) of feature i0. Proposed correspondences whose indices are in Ai0 (defined in Equation (2)) are pointed by red
arrows otherwise by blue arrows. Feature changes after going through CP module are shown in heatmaps.

the realm of object detection, moving the input and/or out-
put of ROI proposal from the original image to the pooled
representation tensor is the core of progress from RCNN [8]
to Fast-RCNN [7] and to Faster-RCNN [23]; in the realm of
flow estimation, successful architectures also calculate dis-
placements within feature representations [5, 13].

7. Conclusion
In this paper, we presented a novel neural network ar-

chitecture to learn representation for video. We propose
a new CP model that computes k correspondence propos-

als for each feature and feeds each of proposed pair to a
shared neural network followed by max pooling to learn a
new feature tensor. We show that the module can effectively
capture motion correspondence information in videos. The
proposed CP module can be integrated with most existing
frame-based or clip-based video architectures. We show
our proposed architecture achieves strong performance on
standard video recognition benchmarks. In terms of future
work, we plan to investigate this new architecture for prob-
lems beyond video classification.
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