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Abstract

Video inpainting aims to fill spatio-temporal holes with
plausible content in a video. Despite tremendous progress
of deep neural networks for image inpainting, it is chal-
lenging to extend these methods to the video domain due to
the additional time dimension. In this work, we propose
a novel deep network architecture for fast video inpaint-
ing. Built upon an image-based encoder-decoder model,
our framework is designed to collect and refine information
from neighbor frames and synthesize still-unknown regions.
At the same time, the output is enforced to be temporally
consistent by a recurrent feedback and a temporal memory
module. Compared with the state-of-the-art image inpaint-
ing algorithm, our method produces videos that are much
more semantically correct and temporally smooth. In con-
trast to the prior video completion method which relies on
time-consuming optimization, our method runs in near real-
time while generating competitive video results. Finally, we
applied our framework to video retargeting task, and obtain
visually pleasing results.

1. Introduction
Video inpainting can help numerous video editing and

restoration tasks such as undesired object removal, scratch
or damage restoration, and retargeting. More importatnly,
and apart from its converntional demands, video inpainting
can be used in combination with Augmented Reality (AR)
for a greater visual experience; Removing existing items
gives more opportunities before overlaying new elements in
a scene. Therefore, as a Diminished Reality (DR) technol-
ogy, it opens up new opportunities to be paired with recent
real-time / deep learning-based AR technologies. More-
over, there are several semi-online streaming scenarios such
as automatic content filtering and visual privacy filtering.
Only a small wait will lead to a considerable latency, thus
making the speed itself an important issue.

Despite tremendous progress on deep learning-based in-
painting of a single image, it is still challenging to extend
these methods to video domain due to the additional time
∗Both authors have contributed equally to this work.

Figure 1. Input video with mask boundaries in red (row-1). Video
inpainting results by per-frame image inpainting [33] (row-2),
optimization-based method [11] (row-3), and our method (row-4).
Best viewed when zoomed-in.

dimension. The difficulties coming from complex motions
and high requirement on temporal consistency make video
inpainting a challenging problem. A straightforward way
to perform video inpainting is to apply image inpainting
on each frame individually. However, this ignores motion
regularities coming from the video dynamics, and is thus
incapable of estimating non-trivial appearance changes in
image-space over time. Moreover, this scheme inevitably
brings temporal inconsistencies and causes severe flicker-
ing artifacts. The second row in Fig. 1 shows an example
of directly applying the state-of-the-art feed-forward image
inpainting [33] in a frame-by-frame manner.

To address the temporal consistency, several methods
have been developed to fill in the missing motion fields; us-
ing a greedy selection of local spatio-temporal patches [24],
a per-frame diffusion-based technique [16], or an iterative
optimization [11]. However, the first two methods treat flow
estimation to be independent of color estimation [16, 24]
and the last relies on time-consuming optimization [11] (3rd
row in Fig. 1), which is effective but limits their practicality
and flexibility in general scenarios.
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One might attempt to maintain temporal consistency by
applying a post-processing method. Recently, Lai et al. [14]
proposed a deep CNN model that takes both original and
per-frame processed videos as input and produces a tempo-
rally consistent video. However, their method is only ap-
plicable when those two input videos have a pixel-wise cor-
respondences (e.g.colorization), which is not the case for
video inpainting.

In this paper, we investigate whether a feed-forward deep
network can be adapted to the video inpainting task. Specif-
ically, we attempt to train a model with two core functions:
1) temporal feature aggregation and 2) temporal consis-
tency preserving. For the temporal feature aggregation,
we cast the video inpainting task as a sequential multi-to-
single frame inpainting problem. In particular, we intro-
duce a novel 3D-2D feed-forward network which is built
upon a 2D-based (image based) encoder-decoder model.
The network is designed to collect and refine potential hints
from neighbor frames and synthesize semantically-coherent
video content in space and time. For the temporal consis-
tency, we propose to use a recurrent feedback and a mem-
ory layer (e.g. convoutional LSTM [28]). In addition, we
use a flow loss to learn a warping of the previously synthe-
sized frame and a warping loss to enforce both short-term
and long-term consistency in results. Finally, we come up
with a single, unified deep CNN model called VINet.

We conduct extensive experiments to validate the con-
tributions of our design choices. We show that our
multi-to-single frame formulation produces videos that are
much more accurate and visually pleasing than the method
of [33]. An example result of our method is shown in the
last row of Fig. 1. Our model sequentially processes video
frames of arbitrary length and requires no optical flow com-
putation at the test time, thus runs at a near real-time rate.

Contribution. In summary, our contribution is as follow.

1. We cast video inpainting as a sequential multi-to-
single frame inpainting task and present a novel deep
3D-2D encoder-decoder network. Our method effec-
tively gathers features from neighbor frames and syn-
thesizes missing content based on them.

2. We use a recurrent feedback and a memory layer for
the temporal stability. Along with the effective net-
work design, we enforce strong temporal consistency
via two losses: flow loss and warping loss.

3. Up to our knowledge, it is the first work to provide
a single, unified deep network for the general video
inpainting task. We conduct extensive subjective and
objective evaluations and show its efficacy. Moreover,
we apply our method to video retargeting and super-
resolution tasks, demonstrating favorable results.

2. Related Work
Significant progress has been made on image inpaint-

ing [1,3,8,12,15,18,30–33], to a point of where commercial
solutions are now available [2]. However, video inpaint-
ing algorithms have been under-investigated. This is due to
the additional time dimension which introduces major chal-
lenges such as severe viewpoint changes, temporal consis-
tency preserving, and high computational complexity. Most
recent methods found in the literature address these issues
using either object-based or patch-based approaches.

In object-based methods, a pre-processing is required to
split a video into foreground objects and background, and it
is followed by an independent reconstruction and merging
step at the end of algorithms. Previous efforts which fall
under this category are homography-based algorithms that
are based on the graph-cut [9,10]. However, the major limi-
tation of these object-based methods is that the synthesized
content has to be copied from the visible regions. Therefore,
these methods are mostly vulnerable to abrupt appearance
changes such as scale variations, e.g. when an object moves
away from the camera.

In patch-based methods, the patches from known regions
are used to fill in a mask region. For example, Patward-
han et al. [19, 20] extend the well-known texture synthesis
technique [8] to video inpainting. However, these meth-
ods either assume static cameras [19] or constrained camera
motion [20] and are based on a greedy patch-filling process
where the early errors are inevitably propagated, yielding
globally inconsistent outputs.

To ensure the global consistency, patch-based algorithms
have been cast as a global optimization problem. Wexler et
al. [27] present a method that optimizes a global energy
minimization problem for 3D spatio-temporal patches by
alternating between patch search and reconstruction steps.
Newson et al. [17] extend this by developing a spatio-
temporal version of PatchMatch [2] to strengthen the tem-
poral coherence and speed up the patch matching. Recently,
Huang et al. [11] modify the energy term of [27] by adding
an optical flow term to enforce temporal consistency. Al-
though these methods are effective, their biggest limitations
are high computational complexity and the absolute depen-
dence upon the pre-computed optical flow which cannot be
guaranteed to be accurate in complex sequences.

To tackle these issues, we propose a deep learning based
method for video inpainting. To better exploit temporal in-
formation coming from multiple frames and be highly ef-
ficient, we construct a 3D-2D encoder-decoder model, that
can provide traceable features revealed from the video dy-
namics. It takes total 6 frames as input; 5 source frames
and 1 reference frame (i.e.the frame to be inpainted). We
learn the feature flow between frames to deal with both
hole-filling and coherence. The still-unknown regions are
synthesized in a semantically natural way based on the sur-



rounding context. We argue that our method provides a
better prospect than the previous optimization-based tech-
niques in that deep CNNs are excellent at learning spa-
tial semantics and temporal dynamics from an ever-growing
vast amount of video data. To our best knowledge, this is the
first work that deeply addresses the general video inpainting
problem via a deep CNN model.

3. Method
3.1. Problem Formulation

Video inpainting aims to fill in arbitrary missing regions
in video frames XT

1 := {X1, X2, ..., XT }. The recon-
structed regions should be either accurate as in the ground-
truth frames Y T

1 := {Y1, Y2, ..., YT } and consistent in
space and time. We formulate the video inpainting prob-
lem as learning a mapping function from XT

1 to the output
Ŷ T
1 := {Ŷ1, Ŷ2, ..., ŶT } such that the conditional distribu-

tion p(Ŷ T
1 |XT

1 ) is identical to p(Y T
1 |XT

1 ). Through match-
ing the conditional distributions, the network learns to gen-
erate realistic and temporally-consistent output sequences.
To simplify the problem, we make a Markov assumption
where we factorize the conditional distribution to a product
form. In this form, the naive frame-by-frame inpainting can
be formulated as

p(Ŷ T
1 |XT

1 ) =

T∏
t=1

p(Ŷt|Xt). (1)

However, to obtain visually pleasing video results, we
argue that the generation of t-th frame Ŷt should be consis-
tent with 1) spatio-temporal neighbor frames Xt+N

t−N where
N denotes a temporal radius, 2) the previously generated
frame Ŷt−1 and 3) all previous history encoded in a recur-
rent memory Mt. Thus, we propose to learn the conditional
distribution of

p(Ŷ T
1 |XT

1 ) =

T∏
t=1

p(Ŷt|Xt+N
t−N , Ŷt−1,Mt). (2)

In our experiments, we set N to 2, taking two lagging
and two leading frames to recover the current frame. We
sample frames with a temporal stride 3, such that Xt+N

t−N :=
{Xt−6, Xt−3, Xt, Xt+3, Xt+6}. We want to recover the
current frame by both aggregating information from neigh-
bor frames and synthesizing totally blind regions jointly. At
the same time, the output is enforced to be temporally con-
sistent with the past predictions by the recurrent feedback
(Ŷt−1) and the memory (Mt). We train a deep networkD to
model the conditional distribution p(Ŷt|Xt+N

t−N , Ŷt−1,Mt)

as Ŷt = D(Xt+N
t−N , Ŷt−1,Mt). We obtain the final output

Ŷ T
1 by applying the function D in an autoregressive man-

ner. Our multi-to-single frame formulation outperforms a
single-frame baseline and even produces results comparable
with the optimization-based method, as described in Sec. 4.

3.2. Network Design

Our full model (VINet) jointly learns to inpaint the video
and maintain temporal consistency. The overview of VINet
is illustrated in Fig. 2.

3.2.1 Multi-to-Single Frame Video Inpainting

In videos, the occluded or removed parts in a frame are often
revealed in the past/future frames as the objects move and
the viewpoint changes. If such hints exist in the temporal ra-
dius, those disclosed content can be borrowed to recover the
current frame. Otherwise, the still-unknown regions should
be synthesized. To achieve this, we construct our model
as an encoder-decoder network that learns such temporal
feature aggregation and single-frame inpainting simultane-
ously. The network is designed to be fully convolutional,
which can handle arbitrary size input.

Source and reference encoders. The encoder is a multiple-
tower network with source and reference streams. The
source stream takes past and future frames with the inpaint-
ing masks as input. For the reference stream, the current
frame and its inpainting mask are provided. We concatenate
the image frames and the masks along the channel axis, and
feed into the encoder. In practice, we use a 6-tower encoder:
5 source streams with weight-sharing that take two lag-
ging (Xt−6, Xt−3) and two leading frames (Xt+3, Xt+6),
and the previously generated frame (Ŷt−1), and 1 reference
stream. The source features that are non-overlapping with
the reference features can be borrowed to inpaint the miss-
ing regions by the following feature flow learning and learn-
able feature composition.

Feature flow learning. Before directly combining the
source and reference features, we propose to explicitly align
the feature points. This strategy helps our model easily bor-
row traceable features from the neighbor frames. To achieve
this, we insert flow sub-networks to estimate the flows be-
tween the source and reference feature maps in four dif-
ferent spatial scales (1/8, 1/4, 1/2, and 1). We adopt the
coarse-to-fine structure of PWCNet [25]. The explicit flow
supervision is only given at the finest scale (i.e. 1) and only
between the consecutive two frames, where we extract the
pseudo-ground-truth flowWt⇒t−1 between Yt and Yt−1 us-
ing FlowNet2 [13].

Learnable Feature Composition. Given the aligned fea-
ture maps from the five source streams, they are concate-
nated along the time dimension and fed into a 5 × 3 × 3
(THW) convolution layer that produces a spatio-temporally
aggregated feature map Fs′ with the time dimension of 1.
This is designed to dynamically select source feature points
across the time axis, by highlighting the features comple-
mentary to the reference features and ignoring otherwise.
For each 4 scales, we employ a mask sub-network to com-



Figure 2. The overview of VINet. Our network takes in multiple frames (Xt−6, Xt−3, Xt, Xt+3, Xt+6) and the previously generated
frame (Ŷt−1), and generates the inpainted frame (Ŷt) as well as the flow map (Ŵt⇒t−1). We employ both flow sub-networks and mask
sub-networks at 4 scales (1/8, 1/4, 1/2, and 1) to aggregate and synthesize feature points progressively. For temporal consistency, we use a
recurrent feedback and a temporal memory layer (ConvLSTM) along with two losses: flow loss and warp loss. The orange arrows denote
the ×2 upsampling for residual flow learning as in [25] for 5 streams, while the thinner orange arrow is for only the stream from Ŷt−1. The
mask sub-networks are omitted in the figure for the simplicity.

bine the aggregated feature map Fs′ with the reference fea-
ture map Fr. The mask sub-network consists of three con-
volution layers and takes the absolute difference of the two
feature maps |Fs′ − Fr| as input and produces single chan-
nel composition mask m, as suggested in [6]. By using the
mask, we can gradually combine the warped features and
the reference features. At the scale of 1/8, the composition
is done by

Fc1/8 = (1−m1/8)� Fr1/8 +m1/8 � Fs′
1/8
, (3)

where � is the element-wise product operator.
Decoder. To pass image details to the decoder, we employ
skip connections as in U-net [23]. To prevent the concern
raised by [32] that skip connections contain zero values at
the masked region, our skip-connections pass the composite
features similarly to Eq. (3), as

Fc1/4 = (1−m1/4)� Fr1/4 +m1/4 � Fs′
1/4
, (4)

Fc1/2 = (1−m1/2)� Fr1/2 +m1/2 � Fs′
1/2
. (5)

At the finest scale, the estimated optical flow Ŵt⇒t−1
is used to warp the previous output Ŷt−1 to the current raw
output Ŷ ′t. We then blend this warped image and the raw
output with the composition mask m1, to obtain our final
output Ŷt as

Ŷt = (1−m1)� Ŷ ′t +m1 � Ŵt⇒t−1(Ŷt−1). (6)

3.2.2 Recurrence and Memory

To strongly enforce the temporal coherence on the video
output, we propose to use the recurrent feedback loop

(Ŷt−1) and the temporal memory layer (Mt) as formulated
in Eq. (2).

Our formulation encourages the current output to be con-
ditional to the previous output frame. The knowledge from
the previous output encourages the traceable features to
be kept unchanged, while the untraceable (e.g. occlusion)
points to be synthesized. This not only helps the output to
be consistent along the motion trajectories but also avoids
ghosting artifacts at occlusions or motion discontinuities.

While the recurrent feedback connects the consecutive
frames, filling in the large holes requires more long-term
(e.g. 5 frames) knowledge. At this point, the temporal mem-
ory layer can help to connect internal features from differ-
ent time steps in the long term. We adopt a convolutional
LSTM (ConvLSTM) layer and a warping loss as suggested
in [14]. In particular, we feed the composite feature Fc at
the scale 1/8 to the ConvLSTM at every time step.

3.3. Losses

We train our network to minimize the following loss
function,

L = λRLR + λFLF + λWLW , (7)

where LR is the reconstruction loss, LF is the flow esti-
mation loss, and LW is the warping loss. The balancing
weights λR, λF , λW are set to 1, 10, 1 respectively through-
out the experiments. For the temporal losses LF and LW ,
we set the number of recurrences as 5 (T = 5).



LR consists of two terms, L1 and Lssim,

L1 =
∥∥∥Ŷt − Yt∥∥∥

1
, (8)

Lssim = (
(2µŶt

µYt + c1)(2σŶtYt
+ c2)

(µ2
Ŷt

+ µ2
Yt

+ c1)(σ2
Ŷt

+ σ2
Yt

+ c2)
), (9)

LR = L1 + Lssim, (10)

where Ŷt, Yt denote the predicted frame and the ground-
truth frame respectively. µ, σ denote the average, variance,
respectively. c1, c2 denote the stabilization constants which
are respectively set to 0.012, 0.032.

The flow loss LF is defined as

T∑
t=2

(
∥∥∥Wt⇒t−1 − Ŵt⇒t−1

∥∥∥
1
+
∥∥∥Yt − Ŵt⇒t−1(Yt−1)

∥∥∥
1
),

(11)
where Wt⇒t−1 is the pseudo-ground-truth backward flow
between the target frames, Yt and Yt−1, extracted by
FlowNet2 [13]. In Eq. (11), the first term is the endpoint
error between the groundturth and the estimated flow, and
the second is the warping error when the flow is used to
warp the previous target frame to the next target frame.

The warping loss LW includes Lst and Llt as,

Lst =

T∑
t=2

Mt⇒t−1

∥∥∥Ŷt −Wt⇒t−1(Yt−1)
∥∥∥
1
, (12)

Llt =

T∑
t=2

Mt⇒1

∥∥∥Ŷt −Wt⇒1(Y1)
∥∥∥
1
, (13)

LW = Lst + Llt. (14)

We follow the protocol in [14] that uses FlowNet2 [13]
to obtain Mt⇒t−1 and Wt−1, which respectively denote
the binary occlusion mask and the backward optical flow
between the target frames Yt and Yt−1. We adopt both
short-term and long-term temporal losses. Note that we use
ground-truth target frames in the warping operation since
the synthesizing ability is imperfect during training.

3.4. Two-Stage Training

We employ a two-stage training scheme that gradually
learns the core functionalities for video inpainting; 1) We
first train the model without the recurrent feedback and
memory to focus on learning the temporal feature aggre-
gation. At this stage, we only use the reconstruction loss
LR; 2) We then add the recurrent feedback and the Con-
vLSTM layer, and fine-tune the model using the full loss
function (Eq. (7)) for temporally coherent predictions. We
use videos in the Youtube-VOS dataset [29] as ground-truth
for the training. It is a large-scale dataset for video object
segmentation containing 4000+ YouTube videos with 70+
common objects. All video frames are resized to 256× 256
pixels for training and testing.

Video mask dataset. In general video inpainting, the
spatio-temporal holes consist in diverse motion and shape
changes. To simulate this complexity during training, we
create the following four types of video masks.

1. Random square: We randomly mask a square box in
each frame. The visible regions each of input frames
are mostly complementary so that the network can
clearly learn how to align, copy, and paste neighbor-
ing feature points.

2. Flying square: The motion of the inpainting holes is
rather regularized than random in real scenarios. To
simulate such regularity, we shift a square by a uniform
step size in one direction across the input frames.

3. Arbitrary mask: To simulate diverse hole shapes and
sizes, we use the irregular mask dataset [15] which
consists of random streaks and holes of arbitrary
shapes. During training, we apply random transfor-
mations (translation, rotation, scaling, sheering).

4. Video object mask: In the context of the video object
removal task, masks with the most realistic appearance
and motion can be obtained from video object segmen-
tation datasets. We use the foreground segmentation
masks of the YouTube-VOS dataset [29].

3.5. Inference

We assume that the inpainting masks for all video frames
are given. To avoid any data overlap between training and
testing, we obtain object masks from the DAVIS dataset [21,
22], the public benchmark dataset for video object segmen-
tation. It contains dynamic scenes, complex camera move-
ments, motion blur effects, and large occlusions. The in-
painting mask is constructed by dilating the ground-truth
segmentation mask. Our method processes frames recur-
sively in a sliding window manner.

3.6. Implementation Details

Our model is implemented using Pytorch v0.4, CUDNN
v7.0, CUDA v9.0. It run on the hardware with Intel(R)
Xeon(R) (2.10GHz) CPU and NVIDIA GTX 1080 Ti GPU.
The model runs at 12.5 fps on a GPU for frames of 256×256
pixels. We use Adam optimizer with β = (0.9, 0.999) and
a fixed learning rate 1e-4. We train our model from scatch.
The first and second training stage takes about 1 day each
using four NVIDIA GTX 1080 Ti GPUs.

4. Experiments
In this section, we conduct experiments to analyze our

two major design choices. Specifically, we visualize the
learned multi-to-single mechanism and show the impact
of the added recurrence and memory. We then evalu-
ate our video results both quantitatively and qualitatively,



(a)

(b)
Figure 3. Visualization of the learned feature composition. In-
put frames are on the odd rows, and corresponding feature flows
referential to the center, and the inpainted frame are on the even
rows. Our network successfully aligns and integrates the source
features to fill in the large and complex hole in the reference frame.

compared with the state-of-the-art baselines. Finally, we
demonstrate the applicability of our framework on video re-
targeting and video super-resolution tasks.

Baselines. We compare our approach to two state-of-the-art
baselines in the literature by running their test codes with
our testing videos and masks.
• Yu et al. [33]: A feed-forward CNN based method,

which is designed for single image inpainting. We pro-
cesses videos frame-by-frame without using any tem-
poral information.

• Huang et al. [11]: An optimization-based video com-
pletion method, which jointly estimates global flow
and color. It requires on-the-fly optical flow compu-
tation and is extremely time-consuming.

4.1. Visualization of Learned Feature Composition

Fig. 3 shows that the proposed model explicitly borrows
visible neighbor features to synthesize the missing content.
For the visualization, we take the model of the first training
stage and plot the learned feature flow from each of the four
source streams to the reference stream, at 128 × 128 pixel
resolution. We observe that even with a large and complex
hole in the reference (center) frame, our network is able to
align the source feature maps to the reference and integrate
them to fill in the hole. Even without an explicit flow su-
pervision, our flow sub-network is able to warp the feature
points in visible regions and shrink the unhelpful zero fea-
tures in masked regions. Moreover, these potential hints are

DAVIS masks on Sintel frames
Frame-by-frame [33] 0.0429
Optimization [11] 0.0343
VINet (agg. only) 0.0383
VINet (agg. + T.C.) 0.0015

Table 1. Flow warping errors. We evaluate the flow warping er-
rors on the Sintel dataset using 21 videos and ground truth flows.

DAVIS masks on DAVIS frames
Frame-by-frame [33] 0.0080
Optimization [11] 0.0053
VINet (agg. only) 0.0073
VINet (agg. + T.C.) 0.0046

Table 2. FID scores. We evaluate the FID scores on the DAVIS
dataset using 20 videos.

adjusted according to the spatio-temporal semantics, rather
than copied-and-pasted in a fixed manner. One example is
shown in Fig. 3-(b) where the eyes of the hamster are syn-
thesized half-closed.

4.2. Improvement on Temporal Consistency

We compare the temporal consistencies of our video re-
sults before and after adding the recurrent feedback and the
convLSTM. To validate the effectiveness of our method, we
also compare with the two representative baselines men-
tioned above [11, 33]. Since the Sintel dataset [4] provides
ground-truth optical flows, we use it to quantitatively mea-
sure the flow warping errors [14]. We use the object masks
in the DAVIS dataset [21, 22] as our inpainting mask se-
quences. We take 32 frames each from 21 videos in Sintel
to constitute our inputs and experiment for five trials. For
each trial, we randomly select 21 videos of length 32+ from
DAVIS to create corresponding mask sequences and keep
them unchanged for all the methods.

In Table. 1, we report the flow warping errors averaged
over the videos and trials. It shows that our full model out-
performs other baselines by large margins. Even the global
(heavy) optimization method [11] performs marginally bet-
ter than our 1st-stage method and has a much larger error
than our full model. Not surprisingly, Yu et al.’s method
turns out to be the least temporally consistent. Note that
the error of our full model is reduced by a factor of 10 after
adding the recurrent feedback and the convLSTM layer, im-
plying that they significantly improve the temporal stability
in the short and long term.

4.3. Spatio-Temporal Video Quality

Wang et al. [26] proposed a video version of the incep-
tion score (FID) to quantitatively evaluate the quality of
video generation. We take this metric to evaluate the qual-
ity of video inpainting as it measures the spatio-temporal



Figure 4. Object removal from DAVIS video sequences. For each input sequence, we show representative frames with mask boundaries
in red. We show the inpainted results using our method in even rows.

quality in a perceptual level. As in [26], we follow the pro-
tocol that uses the I3D network [5] pretrained on a video
recognition task to measure the distance between the spatio-
temporal features extracted from the output videos and the
ground-truth videos.

For this experiment, we take 20 videos in the DAVIS
dataset. For each video, we ensure to choose a different
video out of the other 19 videos to make a mask sequence,
so that we have the setting where our algorithm is sup-
posed to recover the original videos rather than remove any
parts. We use the first 64 frames for both input and mask
videos. We run five trials as in Sec. 4.2 and average the FID
scores over the videos and trials. Table. 2 summarizes the
results. Our method has the smallest FID among the com-
pared methods. This implies that our method achieves both
better visual quality and temporal consistency.

4.4. User Study on Video Object Removal

We apply our approach to remove dynamically mov-
ing objects in videos. We use 24 videos from the DAVIS
dataset [21, 22] of which the names are listed in Fig. 6. Ex-
amples of our results are in Fig. 4. We perform a human
subjective test for evaluating the visual quality of inpainted
videos. We compare our method with the strong optimiza-
tion baseline [11] which is specifically aimed for the video
completion task.

In each testing case, we show the original input video,
our removal result and the result of Huang et al. on the
same screen. The order of the two removal video results
is shuffled. To ensure that a user has enough time to distin-
guish the difference and make a careful judge, we play all
the video results once at the original speed and then once
at 0.5× speed. Also, a user allows seeing videos multi-
ple times. Each participant is asked to choose a preferred



(a) First input frame (b) Horizontally shrunk frames (c) Vertically shrunk frames

Figure 5. Extension to video retargeting. (a) Original first frame. (b) Horizontally shrunk frames. (c) Vertically shrunk frames.

Figure 6. User study results.

result or tie. A total of 30 users participated in this study.
We specifically ask each participant to check for both image
quality and temporal consistency. The user study results are
summarized in Fig. 6. It shows that, while there are different
preferences across video samples, our method is preferred
more often by the participants.

4.5. Application to Video Retargeting

Video retargeting aims to adjust the aspect ratio (or size)
of frames to fit the target aspect ratio while maintaining
salient content in a video. We propose to solve video re-
targeting by removing and then adding, which is a potential
pipeline where our framework would run in combination
with other AR (i.e.overlaying) technologies. Specifically,
we first remove the salient content by inpainting the back-
ground, resize the inpainted frames into the target aspect
ratio, and then overlay the salient content after the desirable
rescaling. To simplify the settings, we target to horizontally
or vertically shrink the frames while keeping the original
aspect ratio of the moving object. The saliency masks can
be automatically estimated, for example, by a feed-forward
CNN [7], however we assume a more constrained scenario

where the saliency masks are given as the object segmen-
tation masks for all frames. Our method yields little war-
ble and jittering over time and produces natural video se-
quences. Fig. 5 shows examples of the retargeted frames.

4.6. Limitation

We observe color saturation artifacts when there is a
large and long occlusion in a video. The discrepancy error
of the synthesized color propagates over time, causing in-
accurate warping. The regions that have not been revealed
in the temporal radius is synthesized blurry. Also, due to
the limited memory footprint, we only experimented with
256× 256 px frames.

5. Conclusion
In this paper, we propose a novel framework for video

inpainting. Based on the multi-to-single encoder-decoder
network, our model learns to aggregate and align the fea-
ture maps from neighbor frames to inpaint videos. We use
the recurrent feedback and the temporal memory to encour-
age temporally coherent output. Our extensive experiments
demonstrate that our method achieves superior visual qual-
ity than the state-of-the-art image inpainting solution and
performs favorably against an optimization method both
qualitatively and quantitatively. Despite some limitations,
we argue that a well-posed feed-forward network has a great
potential to avoid computation-heavy optimization method
and boosts its applicability in many related vision tasks.
Acknowledgements Dahun Kim was partially supported by
Global Ph.D. Fellowship Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry
of Education (NRF-2018H1A2A1062075).



References
[1] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and

J. Verdera. Filling-in by joint interpolation of vector fields
and gray levels. IEEE transactions on image processing,
10(8):1200–1211, 2001. 2

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. Patchmatch: A randomized correspondence algorithm
for structural image editing. ACM Transactions on Graphics
(ToG), 28(3):24, 2009. 2

[3] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image
inpainting. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages 417–
424, 2000. 2

[4] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation. In
European Conference on Computer Vision, pages 611–625.
Springer, 2012. 6

[5] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In Computer Vision
and Pattern Recognition (CVPR), 2017 IEEE Conference on,
pages 4724–4733. IEEE, 2017. 7

[6] D. Chen, J. Liao, L. Yuan, N. Yu, and G. Hua. Coherent
online video style transfer. In Proc. Intl. Conf. Computer
Vision (ICCV), 2017. 4

[7] D. Cho, J. Park, T.-H. Oh, Y.-W. Tai, and I. S. Kweon.
Weakly-and self-supervised learning for content-aware deep
image retargeting. In Computer Vision (ICCV), 2017 IEEE
International Conference on, pages 4568–4577. IEEE, 2017.
8

[8] A. A. Efros and T. K. Leung. Texture synthesis by non-
parametric sampling. In iccv, page 1033. IEEE, 1999. 2

[9] M. Granados, K. I. Kim, J. Tompkin, J. Kautz, and
C. Theobalt. Background inpainting for videos with dynamic
objects and a free-moving camera. In European Conference
on Computer Vision, pages 682–695. Springer, 2012. 2

[10] M. Granados, J. Tompkin, K. Kim, O. Grau, J. Kautz, and
C. Theobalt. How not to be seenobject removal from videos
of crowded scenes. In Computer Graphics Forum, vol-
ume 31, pages 219–228. Wiley Online Library, 2012. 2

[11] J.-B. Huang, S. B. Kang, N. Ahuja, and J. Kopf. Temporally
coherent completion of dynamic video. ACM Transactions
on Graphics (TOG), 35(6):196, 2016. 1, 2, 6, 7

[12] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and
locally consistent image completion. ACM Transactions on
Graphics (TOG), 36(4):107, 2017. 2

[13] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox. Flownet 2.0: Evolution of optical flow estimation
with deep networks. 3, 5

[14] W.-S. Lai, J.-B. Huang, O. Wang, E. Shechtman, E. Yumer,
and M.-H. Yang. Learning blind video temporal consistency.
In Proc. of European Conf. on Computer Vision (ECCV),
2018. 2, 4, 5, 6

[15] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and
B. Catanzaro. Image inpainting for irregular holes using par-
tial convolutions. arXiv preprint arXiv:1804.07723, 2018. 2,
5

[16] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y. Shum.
Full-frame video stabilization with motion inpainting. IEEE
Transactions on pattern analysis and Machine Intelligence,
28(7):1150–1163, 2006. 1

[17] A. Newson, A. Almansa, M. Fradet, Y. Gousseau, and
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