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1 Implementation Details
In order to perform fair comparisons, we have created our benchmark platform in the Pytorch
fromework [1] based on the open-sourced projects [1, 2, 5, 7, 8, 10, 12, 13]. Our unified
framework has allowed us to simply plug our module (BAM) while keeping all other settings
same. All the networks are trained using Stochastic Gradient Descent. On CIFAR, we train
for 300 epochs. The initial learning rate is set to 0.1, and is divided by 10 at 50% and 75%
of the total number of training epochs. On ImageNet, we train models for 90 epochs. The
learning rate is initially set to 0.1, and is decreased by 10 times at epoch 30 and 60. On the
MS COCO detection dataset, we take our ImageNet pretrained models and train for 490K
iterations. The initial learning rate is set to 0.001 and lowered by 10 times at 350K iteration.
We use a weight decay of 10−4 and a Nesterov momentum [11] of 0.9 without dampening.
Throughout the experiments, we used a fixed random seed.

2 The effectiveness of BAM
In Fig. 1, we visualize our attention maps and compare with the baseline feature maps for
thorough analysis of accuracy improvement. We compare two models trained on ImageNet-
1K: ResNet50 and ResNet50 + BAM. We select three examples that the baseline model fails
to correctly classify while the model with BAM succeeds. We gather all the 3D attention
maps at the bottlenecks and examine their distributions with respect to the channel and spa-
tial axes respectively. For visualizing the 2D spatial attention maps, we averaged attention
maps over the channel axis and resized them. All the 2D maps are normalized according to
the global statistics at each stage computed from the whole ImageNet-1K training set. For
visualizing the channel attention profiles, we averaged our attention map over the spatial axis
and uniformly sampled 200 channels similar to [3].
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Figure 1: Visualizing the attention process of BAM. In order to provide an intuitive un-
derstanding of BAM’s role, we visualize image classification process using the images that
baseline (ResNet50) fails to classify correctly while the model with BAM succeeds. Using
the models trained on ImageNet-1K, we gather all the 3D attention maps from each bottle-
neck and examine their distribution spatially and channel-wise. We can clearly observe that
the module BAM successfully drives the network to focus on the target while the baseline
model fails.

As shown in Fig. 1, we can observe that the module BAM drives the network to focus
on the target gradually while the baseline model shows more scattered feature activations.
Note that accurate targeting is important for the fine-grained classification, as the incorrect
answers of the baseline are reasonable errors. At the first stage, we observe high variance
along the channel axis and enhanced 2D feature maps after BAM. Since the theoretical re-
ceptive field size at the first bottleneck is 35, compared to the input image size of 224, the
features contain only local information of the input. Therefore, the filters of attention map at
this stage act as a local feature denoiser. We can infer that both channel and spatial attention
contributes together to selectively refine local features, learning what (‘channel’) and where
(‘spatial’) to focus or suppress. The second stage shows an intermediate characteristic of the
first and final stages. At the final stage, the module generates binary-like 2D attention maps
focusing on the target object. In terms of channel, the attention profile shows few spikes with
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low variance. We conjecture that this is because there is enough information about ‘what’
to focus at this stage. Even it is noisy, note that the features before applying the module
show high activations around the target, indicating that the network already has a strong
clue in what to focus on. By comparing the features of the baseline and before/after BAM,
we verify that BAM accurately focuses on the target object while the baseline features are
still scattered. The visualization of the overall attention process demonstrates the efficacy
of BAM, which refines the features using two complementary attentions jointly to focus on
more meaningful information. Moreover, the stage-by-stage gradual focusing resembles a
hierarchical human perception process [4, 6, 9], suggesting that BAM drives the network to
mimic the human visual system effectively.

3 Additional Visualization Results
We show more visualization results of attention process. All the results in this section are
produced from ResNet50 baseline (with BAM) tested with the ImageNet validation set. In
Sec. 3.1, correctly classified examples with BAM are listed with intermediate activations and
attention maps. We have selected examples where the baseline with BAM succeeds and the
baseline fails. On the contrary, in Sec. 3.2, examples are selected where the baseline with
BAM fails and the baseline succeeds. Figures are best viewed in color.
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3.1 Successful Cases with BAM
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Figure 2: Successful cases with BAM. The shown examples are the intermediate activations
and BAM attention maps when the baseline+BAM succeeds and the baseline fails. Figure
best viewed in color.
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Figure 3: Successful cases with BAM. The shown examples are the intermediate activations
and BAM attention maps when the baseline+BAM succeeds and the baseline fails. Figure
best viewed in color.
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3.2 Failure Cases with BAM
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Figure 4: Failure cases with BAM. The shown examples are the intermediate activations and
BAM attention maps when baseline+BAM fails and baseline succeeds. Figure best viewed
in color.
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