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Abstract—We present a novel coded exposure video technique
for multi-image motion deblurring. The key idea of our work is
to capture video frames with a set of complementary fluttering
patterns, which enables us to preserve all spectrum bands of
a latent image and recover a sharp latent image. To achieve
this, we introduce an algorithm for generating a complementary
set of binary sequences based on the modern communication
theory and implement the coded exposure video system with
an off-the-shelf machine vision camera. To demonstrate the
effectiveness of our method, we provide in-depth analyses of the
theoretical bounds and the spectral gains of our method and other
state-of-the-art computational imaging approaches. We further
show deblurring results on various challenging examples with
quantitative and qualitative comparisons to other computational
image capturing methods used for image deblurring, and show
how our method can be applied for protecting privacy in videos.

Index Terms—Image deblurring, computational photography,
coded exposure, video privacy protection.

I. INTRODUCTION

IMAGE deblurring is a classic computer vision problem
that has been researched for a long time and yet no clear

cut solution exists due to its ill-posedness. To solve this
ill-posed problem, most of the solutions employ a type of
optimization scheme with some prior knowledge. While much
progress has been made recently, restoring heavily blurred
images is still a very challenging problem where previous
methods tend to output over-smoothed images. This is because
the conventional camera exposure process acts as a box filter,
destroying important spatial details of latent images.

A promising solution to the problem is the coded exposure
imaging [1], which is a computational imaging system that
captures an image by fluttering a camera’s shutter open and
close in a special manner within the given exposure time.
This approach modulates the integration pattern of light, and
it enable us to capture an image with invertible motion blur
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where frequency magnitude of point spread functions (PSF)
is greater than zeros for all spectral bands. With the coded
exposure imaging, therefore, we can recover a sharp latent
image as this imaging method preserves lots of spectral bands
in the blurred image. Recent studies in [2], [3] demonstrated
that well-designed fluttering patterns suppress deconvolution
noise of recovered images as well as preserve sharp edges. The
coded exposure imaging has received much attention leading
up to applications in various areas such as iris recognition [4],
barcode scanning [5], and microscopy [6], [7].

One of limitations for coded exposure is losing incoming
light compared to a traditional camera, which results in
decreasing SNR of a latent image. The spectral gain is a
measure to compute flatness of frequency response of flutter-
ing patterns, and it reflects a mean square error of deblurred
images. According to [8], a spectral gain of coded exposure is
slightly more than half of that of the best snapshot. It means
that there is still a room for improvement in coded exposure
in terms of both amount of incoming light and the spectral
gain of fluttering patterns.

Another interesting direction for image deblurring is to
use multiple images. In [9], [10], two deblurring/denoising
configurations were analyzed in depth; multiple sharp images
with high-level noise captured using a short exposure time and
a blurry but low-noise image using a long exposure time. Their
analyses come to the conclusion that aligning-and-averaging
multiple sharp but noisy images achives higher SNR than
deblurring a single image. The idea was later extended in
[11], which showed that a better strategy is to capture a
series of images with relatively small degree of blur using
an intermediate exposure time and then recover a latent image
by jointly deconvolving them.

In [12], Agrawal et al. proposed a video capturing strategy
for the multi-image deblurring that changes the exposure time
at each frame. This work achieved the automatic deblurring
including the PSF invertibility, the PSFs estimation, and the
moving object segmentation from a static background. How-
ever, this work amplifies the deconvolution noise by 4∼5 dB
compared to the coded exposure imaging [1].

In this paper, we propose a coded exposure video scheme
which combines the advantages of both the coded exposure
imaging [1], [2] and the varying exposure video [12]1. In-
stead of varying the exposures between frames, we capture a
video with a fixed exposure per frame and apply the coded

1This paper extends [13] with deeper analysis on the benefit of the
new capture strategy, further technical details of our implementations, and
additional experiments and evaluations
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Fig. 1. Comparisons of different computational imaging techniques for image deblurring. (a) Coded exposure imaging [1]. (b) Varying exposure video [12].
(c) Proposed coded exposure video.

exposure scheme on every frame (Fig. 1(c)). To minimize the
information loss during the image capture, we introduce the
concept of complementary sets of fluttering patterns and show
its theoretical optimal bounds in terms of the spectral gain
and the magnitude of autocorrelation (Sec. III). We realize this
concept by implementing the coded exposure video using an
off-the-shelf machine vision camera (Sec. IV-A), and introduce
a method for generating the complementary set of fluttering
patterns (Sec. IV-B). In Sec. IV-C, we present a multi-image
deblurring procedure to recover a sharp latent image from
blurred images captured using our method. By using the
complementary sets of fluttering patterns, we can generate
various exposure time sequences for the flexible frame rate
capture and also achieve higher quality deblurring results with
improved SNR compared to the previous methods (Sec. V).
We additionally show that our framework can be applied to
other applications such as the privacy protection for video
surveillance by adding intentional blurs [14] (Sec. VI).

II. RELATED WORKS

Image deblurring is a challenging task that is inherently
an ill-posed problem due to the loss of high-frequency infor-
mation during the imaging process. In the past decade, there
have been significant developments in the image deblurring
research that improve the performance over the traditional
deblurring solutions such as Richardson-Lucy [15], [16] and
Wiener filter [17].

One research direction that has gained interest is to use
multiple blurred images for the deblurring, which shows
better performance over the single image deblurring methods
in general due to the complementary information provided.
Yuan et al. used a blurry and noisy image pair to estimate
the blur kernel [18], Cai et al. proposed to use multiple
severely motion-blurred images [19], and Chen et al. per-
formed an iterative blur kernel estimation and a dual image
deblurring [20]. Cho et al. [21] presented a video deblurring
approach that uses sharp regions in a frame to restore blurry
regions of the same content in nearby frames. Delbracio and
Sapiro [22] captured blurred image sequences and recovered a
latent image by performing a weighted average of the images
in the frequency domain where the weights are determined by
the Fourier spectrum magnitude. In [23], [24], motion blur in

a video is reduced by increasing the frame-rate for temporal
super-resolution.

Another research direction of image deblurring is to design
hardware systems to minimize motion blur during exposure
or to make the deblurring problem more feasible. Optical
and electrical image stabilizer [25], [26] are used to reduce
image blur associated with the motion of a camera by compen-
sating rotation and translation of imaging devices. However,
the stabilizer systems work for limited cases such as small
motion from hand shaking. In order to handle larger image
blur for surveillance and manufacturing inspection systems,
specialized camera devices are designed in [27], [28], [29].
The systems capture a video whose each pixel is independently
modulated by binary patterns, which enables the recovery of
high temporal resolution.

On the other hand, this paper is particularly related to the
works that employ imaging systems that control the exposures
for the whole image, not on the pixel level, during image
captures. This approach handles large motion blur effectively
by only using an off-the-shelf camera. In [1], Raskar et al.
presented the coded exposure photography that flutters the
camera’s shutter open and closed in a special manner within
the exposure time in order to preserve the spatial frequency
details, thereby enabling the deconvolution problem to become
well-posed (Fig. 1(a)). Jeon et al. [2] improved the decon-
volution performance by computing the optimized fluttering
patterns. In [30], McCloskey replaced the flutter shutter with
a temporal coded illumination. The coded illumination works
by controlling a flash light array at low-light conditions for
capturing fast moving objects and enables the recovery of a
sharp appearance of the moving objects.

The coded exposure method has been recently applied to
various areas. In [4] and [5], the coded exposure framework
has been applied for the recovery of sharp iris images and
2D barcode images. Similar to [30], Ma et al. [7] proposed
a LED array microscope with a controllable illumination.
This approach generated a continuous illumination pattern and
retrieved deblurred samples with high SNR. Gorthi et al. [6]
designed a fluorescence microscope that controls the excitation
light and captures flowing cells with a global shutter camera.

Instead of the fluttering shutter within a single exposure,
Agrawal et al. [12] proposed a varying exposure video
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framework which varies the exposure time of successive
frames (Fig. 1(b)). The main idea is to image the same
object with varying PSFs by varying the exposures so that
the nulls in the frequency component of one frame can
be filled with other frames, making the deblurring problem
well-posed. Holloway et al. [31] applied the concept of
coded exposure into a video camera. This approach captures
a series of coded exposure images with different fluttering
patterns in successive frames and performs temporal resolution
upsampling via compressed sensing. As mentioned in [31],
this approach cannot handle scenes without the spatiotemporal
continuity and requires many observations for estimating the
object motion.

In the coded exposure imaging, designing the fluttering
pattern is crucial in determining the performance of the image
restoration. Raskar et al. [1] computed the fluttering patterns
via a random sample search and used the minimum spectrum
of a fluttering pattern as the objective function. McCloskey et
al. [3] also presented a search-based method that incorporates
natural image statistics in generating fluttering patterns. How-
ever, those measures may fail to generate consistently good
fluttering patterns when the size of the patterns becomes long
or images do not follow the natural image statistics.

To deal with the problem, Jeon et al. [32] showed that the
magnitude of the autocorrelation of binary sequences in the
frequency domain is a good measure of a fluttering pattern
and presented a principled way for designing the fluttering
patterns. Following the development of [12], [2], we introduce
a new concept of video capturing for multi-image deblurring
in this paper. In our framework, different fluttering patterns
that are computed using complementary sets of sequences are
applied at each frame allowing for the sharp recovery of latent
images. We assume the velocity of an object is unchanged
during taking an image and focus on handling linear motion
blur.

III. COMPLEMENTARY SET OF SEQUENCES AND
CODED EXPOSURE

The key idea of this paper is to capture video frames
with a set of fluttering patterns that compensate frequency
losses in each frame, so that the captured images preserve
spatial frequencies. To generate such fluttering patterns, we
introduce the complementary set of binary sequences [33],
which have been widely used in many engineering applications
such as the multiple-input-multiple-output (MIMO) radar [34],
the code division multiple access (CDMA) technique [35],
infrared spectrometry [33], and radar [34]. In this section,
we theoretically show the advantage of the coded exposure
video with the complementary set of fluttering patterns over
the coded exposure imaging [1], [2] and the varying exposure
video [12].

A. Coded Exposure Imaging vs. Coded Exposure Video

In [1], it has been shown that a fluttering pattern with a
flat spectrum improves the quality of the deblurring in the
coded exposure imaging. To measure the flatness, they use the
sum of an autocovariance function of a fluttering pattern. It is

also shown in [2] that an autocorrelation function of a binary
sequence can be approximated by an autocovariance function.
With a binary sequence U = [u1, · · · , un] of length n, the
relationship between the autocorrelation and the modulated
transfer function (MTF : a magnitude of frequency response
of binary sequence) via the Fourier transform of the sequence
is derived as ([36])

n−1∑
k=1

Ψ2
k =

1

2

∫ π

−π

[
|F(U)|2 − n

]2
dθ, (1)

where F(U) represents the Fourier transform of the sequence
U , and θ is an angular frequency. Ψk denotes kth element
of the autocorrelation function Ψ of the sequence, which is
defined as

Ψk =

n−k∑
j=1

ujuj+k. (2)

In [2], it is shown that a smaller value of Eq. (1) reflects
higher merit factor, which in turn results in better deblurring
performance. Ukil proves in [37] that the minimum value of
Eq. (1) is bounded by n/2.

In our coded exposure video framework, a complementary
set is defined as a set of binary sequences where the sum of
autocorrelation functions of the sequences in the set is zero.
If we have a complementary set ∆ consisting of p(≥ 2) se-
quences {U1, · · · , Up} of length n, the relationship is denoted
as

p∑
i=1

Ψi
k = 0 for any k except k 6= 0, (3)

where Ψi
k denotes kth element of the autocorrelation function

Ψ of the ith sequence in ∆.
It is shown in [38] that a complementary set ∆ is computed

by minimizing

n−1∑
k=1

|
p∑
i=1

Ψi
k|

2
=

1

2

∫ π

−π

[
p∑
i=1

|F(Ui)|2 − pn

]2
dθ. (4)

In the optimal case, the minimum value of Eq. (4) becomes
zero from Eq. (3). This means that the joint spectrum of a
complementary set has flatter spectrum than that of a single
binary sequence (coded exposure imaging) since Eq. (1) is
bounded to n/2 for a single binary sequence as mentioned
above.

B. Performance Invariance to Object Velocity

When the object moves over a range of n pixels dur-
ing a shot, the optimal length of a fluttering pattern U =
[u1, · · · , un] is n. As demonstrated in [39], if the ob-
ject moves twice as fast, the effective PSF is stretched
1
2n [u1, u1, · · · , un, un] and the invertibility of the PSF cannot
be guaranteed.

We show that complementary set of sequences minimizes
the loss of spectral information even when the effective PSFs
are super-sampled or stretched due to the velocity of an object.
As an example, we derive the change of MTF due to a
stretched sequence by a factor 2:
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Fig. 2. Joint MTF of each method and its theoretical upper bound. (a) Varying exposure video [12]. (b) Different fluttering patterns by random sample
search [1]. (c) The proposed method by complementary set of fluttering patterns.

bi =
2n−i−1∑
j=0

U2nU2n(j + i)

=

n−q−1∑
p=0

[U2n(2p)U2n(2p+2q)+U2n(2p+1)U2n(2p+2q+1)]

=

n−q−1∑
p=0

[Un(p)Un(p+ q) + Un(p)Un(p+ q)] = 2Ψq,

where j = 2p and i = 2q. (5)

The variance of the MTF of the stretched PSF is constant times
bigger than the PSF as follows:

n−1∑
i=1

bi = 4

n−1∑
k=1

Ψk
2 = 2

∫ π

−π
[|F(Un)|2 − n]2dθ. (6)

As mentioned in Sec. III-A, the optimal bound of
1
2

∫ 1

0
[F(Un) − n]dθ in the complementary set of sequences

is theoretically zero. Thus, the optimal bound of the deci-
mated PSF also becomes zero. In practice, because our set
of sequences is close to the optimal bound, the proposed
complementary set can handle the velocity dependency issue
and it can be shown for the case of any factor. Our system’s
robustness to the object velocity is also demonstrated in the
Experiments Section.

C. Varying Exposure Video vs. Coded Exposure Video

To compare our coded exposure video framework with the
varying exposure video [12], we analyze the upper bound
of MTFs for these two methods. The main criteria for the
comparisons are the variance, the minimum, and the mean of
the MTF. As shown in [1], [3], the MTF of a binary sequence
in the coded exposure photography has a direct impact on the
performance of the image deblurring. The variance and the
mean of the MTF are related to deconvolution noise, and the
peakiness of the spectrum has an ill effect on deblurring since
it destroys the spatial frequencies in the blurred image.

The MTF of the varying exposure method [12] is the joint
spectrum of different durations of rectangle functions in the

time domain (Fig. 2(a)). The upper bound of the joint MTF
Xvary of p varying exposures is derived as

|Xvary(ω)| =
p∑
i=1

|F(Π(li))| =
p∑
i=1

|
sin li

2 ω

sin ω
2

| ≤ | p

sin ω
2

|, (7)

where Π(l) denotes a rectangle function of length l, and ω is
a circular frequency at [−π, π].

To compute the upper bound for the coded exposure video,
let Φ denote a binary sequence of +1’s and −1’s. Parker et
al. [40] showed that the sum of all the Fourier transform
components of a complementary set of p sequences Φi, i =
[1, · · · , p] of length n is at most

√
pn. Since a fluttering pattern

in the coded exposure imaging is made of +1’s and 0’s due to
its physical nature, the upper bound of the joint MTF Xcomp

of a complementary set is computed as

|Xcomp(ω)| = 1

2

p∑
i=1

|F(Φi + Π(n))| (8)

≤ 1

2

p∑
i=1

|F(Φi)|+
1

2

p∑
i=1

|F(Π(n))| ≤ 1

2

√
pn+ | p

2 sin ω
2

|.

Fig. 2 compares the joint MTF of the varying exposure
video and the coded exposure video with the theoretical upper
bound in Eq. (7) and Eq. (8). For the varying exposure video
in (a), the exposure lengths of [30, 35, 42] are used as in [12].
For the coded exposure video, we use three random sequences
from [1] in (b) and our complementary set of binary sequences
in (c) which will be explained in the next section. As can be
seen in the figure, no null frequency is observed at the MTFs of
each coded pattern in the complementary set. This means that
each single frame becomes invertible as with the conventional
coded exposure imaging [1], [2]. In (b), the peaky spectrums
of the random binary sequences are moderated but the variance
of the joint MTF is still large. The peaky spectrums of each
sequence in the complementary set are well compensated by
the joint MTF (c), and the joint MTF (c) has much flatter and
higher MTF than the joint MTFs of both the varying exposure
method (a) and the set of the random sample sequences (b).

Theoretical upper bounds as well as the actual performance
measurements of the MTF properties for the varying exposure
video and the coded exposure video are plotted in Fig. 3.
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Fig. 3. The theoretical upper bound and the actual performance measurement of the varying exposure video and the coded exposure video in terms of MTF
properties. Green lines and red lines represent theoretical optimal bounds of the varying exposure video and the coded exposure video, respectively.

TABLE I
SPECTRAL GAINS OF DIFFERENT COMPUTATIONAL IMAGING METHODS

FOR MOTION DEBLURRING.

Method Spectral Gain
Single Coded Exposure [1] 0.5636

Varying Exposure [12] 0.5782
Three Different Patterns 0.6581

Proposed (3 Patterns) 0.7730∼0.8331
Proposed (4 Patterns) 0.8554

To verify the effectiveness of the complementary set of flut-
tering patterns, the random sample search method in [1] is
used to generate the binary sequences for single image and
three images cases. Although the MTFs of both the coded
exposure and the varying exposure do not reach the lower
(variance) and the upper bound (mean and minimum), the
coded exposure patterns show better MTF properties than both
the varying exposure method and the set of random sequences.
Specifically, the complementary set has a jointly flat spectrum
with higher mean and minimum MTF value which are even
better than the theoretical bounds of the varying exposure
method. This shows that the complementary set preserves
spatial frequencies well by compensating frequency losses in
each frame. It is worth noting that while utilizing all the
sequences in a complementary set is ideal in theory, utilizing a
partial set of the complementary set is also effective as shown
in Fig. 2 and Fig. 3.

D. Spectral Gain

According to the work in [8], we estimate the spectral
gain of the complementary set of sequences over an optimal
snapshot to quantitatively analyze the performance gain of
our method. Tendero et al. [8] have proven that the energy
function of fluttering patterns in the frequency domain is
denoted as:

G(U) =
1

2π
√
v

∫ π
−π|F(U)| dθ√
‖U‖1

, (9)

where v is velocity of a moving object and ‖ · ‖1 is the L1

norm. G(U) represents integral of a normalized MTF of a PSF
F(U). Because we are only interested in the numerical gain
of fluttering patterns, we set v to 1 in Eq. (9). To maximize
the G(U), Fourier transform of fluttering patterns should be
constant. Then, the spectral gain is obtained by the ratio of two
energies between the optimal snapshot2 and the target imaging
method.

We estimate spectral gains of different capturing methods
with the same exposure time. The result is summarized in Ta-
ble I. The spectral gain of our complementary set consisting
of 4 sequences is 0.8554. The gain of 3 selected sequences
from the set is 0.7730∼0.8331, which is much higher than
the spectral gains (0.56 and 0.57) of the single coded exposure
method [1] and the varying exposure method [12].

In [8], they also proposed the concept of a “continuous
numerical flutter shutter”, and showed that the sinc function
whose spectrum is completely flat is the best fluttering pattern
(spectral gain: 1.17). Although our complementary set consists
of binary sequences, its joint form is similar to that of
the numerical shutter. We observed that the spectral gain is
directly proportional to the PSNR and SSIM values through
our synthetic experiments Sec. V-A.

IV. CODED EXPOSURE VIDEO

A. Implementation of Coded Exposure Video

Constructing a hardware system for the coded exposure
video is not trivial. We implemented the coded exposure
video system using a Point Grey Flea3 GigE camera which
supports the multiple exposure pulse-width mode (Trigger
Mode 5) and an ATmega128 microcontroller to generate
external trigger pulses as shown in Fig. 4 (a). In the multiple
exposure pulse-width mode, the shutter time is controlled by
the width of a trigger pulse generated by the microcontroller.
Data transfer between the computer and the camera is done

2In [8], the energy G of the optimal snapshot is 0.1359. We use this value
for computing spectral gains.
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Fig. 4. Hardware Setup for the Coded Exposure Video.

through Ethernet and the messages are delivered using the
serial communication. Messages are sent to the microcontroller
from the computer, which includes a set of fluttering patterns
and two signals indicating the start and the end of the image
capture.

Fig. 4 (b) shows the overview of our coded exposure video
implementation. The camera finishes taking an image after c
times of peaks in a trigger signal (gray area in the figure),
which indicates the end of a sequence (step 2). Then, the
camera transmits a recorded image and an end signal to the
computer (step 3), and the computer passes the parameter
c of the next sequence to the camera (step 4). We used
this system to capture both varying exposure videos and
coded exposure videos. Each shutter chop is 1ms long and
the frame rate is fixed to 5 frames per second regardless
of the sequence length due to our hardware limitation. The
implementation manual and the source code of this capture
system are released on our project page, https://sites.google.
com/site/hgjeoncv/complementary sets/.

B. Generating Complementary Sets of Fluttering Patterns

In the coded exposure imaging, a fluttering pattern of a
camera shutter generally consists of a sequence longer than
20 bits, or even longer than 100 bits. Since the length of the
fluttering pattern may vary due to the illumination condition
or the object motion, it is beneficial to have a flexibility in the
length of the pattern. In this subsection, we introduce a method
for generating a complementary set of fluttering patterns of
flexible length.

Our strategy for obtaining the flexibility in the sequence
length is to generate the complementary set by expanding a
small-sized initial set that is known to be a complementary set.

Since the research in the complementary set construction has
a long history, many known complementary sets exist such as

∆ =

[
0 1
0 0

]
,

[
11101101
11100010

]
,


000010100100
001001111101
101000100011
001110010111

 ,
where ∆ denotes a complementary set in a matrix form. In
∆, each row vector represents one sequence and the set of all
row vectors is a complementary set.

From an initial complementary set ∆(p,n) which consists
of p sequences of length n, we can iteratively generate larger
complementary sets [33]. With a complementary set ∆, a new
complementary set ∆1 with larger length sequence is obtained
by

∆1 =

[
∆ ∆ ∆̄ ∆
∆̄ ∆ ∆ ∆

]
, (10)

where ∆̄ denotes the matrix with all the elements δs in ∆
flipped. After applying the expansion t times, we obtain a
complementary matrix ∆t ∈ R2tp×4tn, which contains 2tp
sequences of length 4tn.

Another option for generating variable length sequences is
to divide ∆ into two matrices with the same length as

∆ =
[

∆L ∆R

]
. (11)

In this case, both matrices ∆L and ∆R become complemen-
tary sets [41].

With the two matrix operations in Eq. (10) and Eq. (11), we
can generate a complementary set, whose size is 2tp × 22tn
or 2tp × 22t−1n. Since there are many well-known initial
complementary sets with various sizes, we can generate com-
plementary sets with huge flexibility of sequence length using
the two methods.

Fig. 5(a) shows an example of the joint MTF of a comple-
mentary set ∆. Fig. 5(b) and (c) are the joint MTFs after the
operation in Eq. (11), respectively. In this case, ∆L and ∆R

have the same spectrum because ∆ is generated from Eq. (10)
that expands a complementary set without the loss of the skew
symmetric property of binary sequences.

In the video deblurring scenario, the required number of
sequences (or images) are usually limited to 2∼5 because
it is enough to compensate for the frequency losses and
taking many pictures may create additional problems such
as the alignment and the field-of-view issue. Therefore, we
first generate a complementary set that fits with the required
sequence length, and then select the required number of
sequences among many candidate sequences in the set.

As for the criteria for selecting sequences from the available
set of sequences, we consider the number of open chops.
In general, the generated sequences have similar number of
open chops, e.g. n/2, however it could be slightly different
especially for short length sequences. In this case, selecting
sequences with equal number of open chops can be an
important criterion to avoid flickering between frames.

To illustrate the performance difference with varying selec-
tion of candidate sequences, we generated a complementary set
of fluttering patterns containing eight sequences and chose two

https://sites.google.com/site/hgjeoncv/complementary_sets/
https://sites.google.com/site/hgjeoncv/complementary_sets/
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Fig. 5. An example of the joint MTF of a complementary set.
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Fig. 6. Joint MTFs of the subsets of a complementary set. (a) joint MTF of a complementary set of fluttering patterns. (b,c) Joint MTFs of two different
subsets consisting of three sequences.

different subsets consisting of three sequences. Fig. 6 shows
the joint MTFs of both the complementary set and the subsets.
Although the MTF properties of the subsets are slightly worse
than that of the eight complementary set, the subset sequences
still preserve the flat spectrum.

C. A Blurred Object Extraction and Deblurring

One practical issue with the coded exposure imaging is
to extract an accurate matte image for the moving object
deblurring. It is challenging because a blur profile becomes
locally non-smooth due to the exposure fluttering. Agrawal
and Xu [42] proposed the fluttering pattern design rules that
minimize the transitions and maximize continuous open chops
and showed that both criteria of PSF estimation [43] and in-
vertibility can be achieved. In [44], a blurred object is extracted
from a static background with user strokes in order to estimate
motion paths and magnitudes. McCloskey et al. [3] presented
a PSF estimation algorithm for coded exposure assuming that
the image only contains a motion blurred object. In this paper,
we deal with this matting issue by jointly estimating the PSF,
object matting, and the multi-image deblurring. We assume
that the images are captured from a static camera and a moving
object is blurred by a constant velocity 1-D motion.

1) Initialization: To accurately extract the blurred object
(Fig. 7(a)), we first capture background images and model
each pixel of the background using a Gaussian mixture model
(GMM). When an object passes over the background, we esti-
mate an initial foreground layer by computing the Mahalanobis

45 50 55 60 65 70 75 80
-20

0

20

40

60

80
PSF3

Blur Size

M
at

ch
in

g 
S

co
re

45 50 55 60 65 70 75 80
-20

0

20

40

60

80

100

Blur Size

M
at

ch
in

g 
S

co
re

PSF1

45 50 55 60 65 70 75 80
-20

-10

0

10

20

30

40

50

60

70

Blur Size

M
at

ch
in

g 
S

co
re

PSF2

(a) Inputs (b) Trimaps (c) Deblurring and PSFs

(d) Aligned image (e) Initial deblurring (f) Refined deblurring

Fig. 7. Multi-image Deblurring Procedure

distance between pixels of each image and the background
model. Since the estimated layers are somewhat noisy, we
refine the layers by applying morphological operations and
make trimaps. Using the trimaps (Fig. 7(b)), we extract the
blurred object at each image via the closed form matting [45].

After the object matting, we estimate the PSF of each image
based on the method in [3], which can handle the cases of
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constant velocity, constant acceleration, and harmonic motion.
Specifically, we first perform the radon transform and choose
the direction with the maximal variance as a blur direction.
This is because high spatial frequencies of a blurred image
are collapsed according to a blur direction. Then, we compute
matching scores between the power spectral density of the
blurred image and the MTF of the fluttering pattern for various
blur size. We determine the size of blur by choosing the highest
matching score. With this method, we estimate the blur kernel
of each coded blurred image independently (Fig. 7(c)). This
is useful because we do not suffer from the violation of the
constant motion assumption between frames that often occurs
in practice.

With the estimated PSFs, the captured images are deblurred
independently. Then, we align all images by an affine matrix
of the deblurred images using SIFT feature matching [46],
and merge all the captured images along with the alpha maps
(Fig. 7(d)). In the merging step, we assume that the camera
response function [47] is linear as we used a machine vision
camera, and align the intensity level of all frames to the
brightest frame using the exposure time of each frame.

2) Iterative Refinement: After the initialization, we iter-
atively optimize between a latent image and the segmentation
masks. Based on the merged image with the PSFs, we per-
form a non-blind multi-image deblurring by minimizing the
following energy term:

argmin
Y

m∑
j=1

‖Bj −KjY ‖2 + λd‖∇Y ‖ρ, (12)

where Y is a latent deblurred image, ∇Y is the gradient of the
latent image, Bj is a set of linearly blurred images captured
by a set of PSF matrices Kj . λd is the smoothness weight
and m is the number of images. Since the background of each
blurred image is already subtracted in Bj , we ignore artifacts
from the background during this deblurring process. We set
ρ = 0.8 for image deblurring [48] and ρ = 0.5 for the merged
alpha map deblurring α according to [44]. The deblurred alpha
map α is re-blurred to obtain a guidance alpha map α̂ which
is incorporated as a soft constraint in the close form matting
to refine the alpha map α for the moving object [49]:

argmin
α

αTLα+ λm(α− α̂)TD(α− α̂), (13)

where L is the Laplacian matrix of the closed form matting,
D is a diagonal matrix and λm is the weight for the soft
constraint.

With the refined alpha maps, we optimize the set of affine
matrices H that minimizes the energy function similar to the
stereo matching as follows:

argmin
H

m−1∑
j=1

{λa min(|Xref −HjXj |, τcolor)

+ (1− λa) min(|∇Xref −∇(HjXj)|, τgrad)}, (14)

where X is independently deblurred image and Xref is the
reference view. λa balances the color and the gradient terms,
and τcolor, τgrad are truncation values to account for outliers
correspondences.
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Fig. 8. The performance variations of the proposed method according to the
number of fluttering patterns used.

As shown in Fig. 7(f), our algorithm shows a promising
result of moving object deblurring in a complex background.
The refinement is iterated 2 or 3 times for the final result and
takes 5 minutes for an image with 800×600 resolution in our
MATLAB implementation. Of that time, the computation on
GMM takes 1 minute, trimaps and matting take 1 minute,
and PSF estimation and deblurring take 1 minute in the
initialization step. In the iterative refinement step, alignment
with optimization in Eq. (14) takes 20 seconds, and multi-
image deblurring takes 30 seconds.

We empirically set {λd, λa, τcolor, τgrad} =
{0.01, 0.5, 0.3, 0.5}. The soft constraint in Eq. (13) indicates
that α is consistent with foreground pixels, so we adjust λm
according to a blur size. We set λm to 0.05 if a blur size is
smaller than 30 pixels, or 0.1 if otherwise.

V. EXPERIMENTS

To verify the effectiveness of the proposed method, we
perform both quantitative and qualitative comparisons with
other computational imaging methods; the coded exposure
imaging [1] and the varying exposure video [12]. For the coded
exposure method [1], we use a fluttering pattern of length
48 generated by the author’s code3. The exposure sequences
[30, 35, 42ms] stated in [12] is used for the varying exposure
method. The fluttering patterns of length 48 of the proposed
method is generated by applying Eq. (10) once to the initial
set 4.

3www.umiacs.umd.edu/˜aagrawal/MotionBlur/SearchBestSeq.zip
4The initial set we used in this work is [000010100100; 001001111101;

101000100011; 001110010111]



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, AUGUST 2016 9

0 5 10 15 20 25 30
0.7

0.75

0.8

0.85

0.9

0.95

1
SSIM

Image number in the synthetic dataset

 

 

0 5 10 15 20 25 30
15

20

25

30

35

Image number in the synthetic dataset

(d
B

)

PSNR

 

 

Coded Exposure (Single Pattern)

Coded Exposure (Three Same Patterns)

Coded Exposure (Three Different Patterns)

Varying Exposure

Proposed

Fig. 9. The quantitative comparisons of different methods on image deblurring.

We also perform comparisons with state-of-the-art deblur-
ring algorithms [50], [51], [52], [53]. By comparing the pro-
posed method with the deblurring algorithms, we demonstrate
the synergy between our hardware configuration and software
algorithm over the conventional software-based approaches. In
the recent benchmark for single image blind deblurring [54],
two-phase kernel estimation method [50] achieves the best
result with large motion blur in the presence of noise. De-
blurring with a dark channel prior [51] also shows superior
performance over other single image deblurring methods. The
researches in [52], [53] propose video deblurring algorithms
which jointly estimate object segmentation and camera motion
where each layer can be deblurred well. We obtain the results
of [50], [51], [52] by running the codes released by authors5.
The result of [53] are provided by the author.

A. Synthetic Experiments

For quantitative evaluations, we perform synthetic experi-
ments. As the synthetic data, we use 29 images downloaded
from Kodak Lossless True Color Image Suite [55]. Image
blur is simulated by the 1D filtering with different exposure
sequences generated by each method. To simulate a real
photography, we add the intensity dependent Gaussian noise
with the standard deviation σ = 0.01

√
i where i is the

noise-free intensity of the blurred images in [0, 1] [56]. The

5[50]: http://www.cse.cuhk.edu.hk/leojia/projects/robust deblur/index.html
[51]: http://vllab1.ucmerced.edu/∼jinshan/projects/dark-channel-deblur/
[52]: http://cv.snu.ac.kr/research/∼VD/

(a) A random sequences set (b) Proposed

Fig. 10. Comparison of results using a random set and the proposed
complementary set when PSFs are stretched (Blur size : 96 pixels).

peak signal-to-noise ratio (PSNR) and the gray-scale structural
similarity (SSIM) [57] are used as the quality metrics. For
fair comparisons, we conduct parameter sweeps for image
deblurring and the highest PSNR and SSIM values of each
image/method are reported.

Fig. 8 reports the averaged PSNR and SSIM of the proposed
method according to the number of images used. We can
observe that better performance is achieved with more images,
however, the performance gain ratio is reduced as the number
of images increases. The experiment shows that utilizing three
fluttering patterns is a good trade-off between the performance
gain and the burden of multi-image deblurring for the proposed
method. Therefore we use three fluttering patterns for the
remaining experiments.

http://www.cse.cuhk.edu.hk/leojia/projects/robust_deblur/index.html
http://vllab1.ucmerced.edu/~jinshan/projects/dark-channel-deblur/
http://cv.snu.ac.kr/research/~VD/
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(a) Two Phase Kernel [50] (b) Dark Channel Prior [51] (c) Coded Exposure [1]

(d) Varying Exposure [12] (e) Proposed

Fig. 11. Indoor experiment. A static camera is used for taking the fast moving object.

Quantitative comparisons of different methods are shown
in Fig. 9. For a complete verification, we additionally consider
two sets of coded exposure sequences generated by the random
sample search [1]. Each set of three sequences consists of
the same fluttering pattern and three different patterns, re-
spectively. We include this two sets of sequences as baseline
extensions of a single coded exposure to coded exposure video.
Although deblurred images from the same fluttering pattern
will have almost same results each other, we can expect an
effect of a mean filter that suppresses deconvolution noise.
The proposed method outperforms the previous methods for
all the dataset, with large margins especially in SSIM. This is
because the proposed method yields high-quality deblurring
results while the previous methods fail to recover textured
regions due to the loss of high spatial frequencies. Fig. 1 shows
examples of the synthetic result. As shown in the figures, our
method outperforms the other methods both qualitatively and
quantitatively.

B. Real-world Experiments

In Fig. 10, we show an empirical validation of the per-
formance issue related to the object velocity, discussed in
Sec. III-B. We captured a resolution chart in a carefully

controlled environment as shown in Fig. 4. We let the chart
move along a straight track at a constant speed. In the captured
images, the chart moved two pixels during one exposure chop.
We compare our complementary set with a set of randomly
generated fluttering patterns. As shown in Fig. 10, when PSF
is stretched twice, the deblurred image captured by the random
sequence set has noticeable artifacts around edges. On the
other hand, the proposed complementary set is able to preserve
the details on the resolution chart.

Fig. 11 compares the results from the images captured in
an indoor environment. Earlier, we explained that traditional
exposure destroys spatial frequencies of the blurred image.
Software-based deblurring algorithms [50], [51] fail to recover
a clean image due to the frequency loss even though they
use well-designed priors and perform post processing. The
proposed method yields a sharper image and recovers details
better than the other methods.

We further apply our coded exposure video framework to
a robotics application. Handling motion blur is critical for
robotics applications such as visual odometry and SLAM [58]
as the blur can significantly degrade their performance. We
attached our coded exposure video system to a wheeled robot
as shown in Fig. 12, where the speed of the robot is about



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, AUGUST 2016 11

(a) Mobile Robot (b) Two Phase Kernel [50]

(c) Dark Channel Prior [51] (d) Coded Exposure [1]

(e) Varying Exposure [12] (f) Proposed

Fig. 12. Mobile robot application. The robot captures image sequentially
using a side-view camera.

1 meter per second. As shown in Fig. 12, using the coded
exposure video enables the recovery of sharp images compared
to the other methods. Note that the ringing artifacts in the
results are caused by the violations of the constant velocity
and the linear motion assumptions.

Fig. 13 shows the results of deblurring multiple objects with
different velocities. To segment each object trimap separately,
we performed multi-label optimization via graph-cuts [59].
Then, each object was deblurred and pasted onto the back-
ground independently. In Fig. 13, one object is highly textured
and moving fast, while the other one is lowly textured and
moving slow. We compare our result to video deblurring
methods in [52], [53]. Pixel-wise blur kernels using optical
flow [52] are estimated at each frame. Although these methods
segment foreground blurred objects successfully, the deblurred
image is still blurry. The proposed method shows the best
result compared to the other methods including computational
imaging approaches [1], [12].

We then perform another real-world experiment in outdoor
by capturing a fast moving object as shown in Fig. 14. The
motion direction and the blur kernel is estimated automatically
in the complex background that has a similar color as the
moving car. Software-based approaches [52], [53] fail to com-
pute latent images. In [52], image restoration quality depends
on the performance of optical flow. Complex background
structure results in the inaccurate estimation of optical flow
and blur kernels. The result of [53] shows a relatively good
deblurred image because a user-defined soft segmentation
helps extract a blurred foreground object, however, texts and
edges in the deblurred image are not recovered accurately. On
the other hand, computational imaging methods show good
performance. In particular, our coded exposure video scheme
outperforms all the other methods [1], [12].

VI. APPLICATION TO A PRIVACY PROTECTION METHOD
FOR VIDEO SURVEILLANCE

The privacy protection for video surveillance has become an
important issue recently as the video surveillance has become
a commonplace. Various attempts have been made to address
the issue in computer vision [61], [62], [63] and an interesting
study is the use of a coprime blur scheme, which strategically
blurs surveillance videos for privacy protection [14].

The coprime blur scheme encrypts video streams by ap-
plying two different blur kernels which satisfy coprimality,
and forms a public stream and a private stream. An unblurred
stream can be recovered by a coprime deblurring algorithm
when both the private and public streams can be accessed.
Since it is very difficult to apply blind deconvolution with only
a public stream, the privacy in video streams is protected and a
higher level of security can be achieved by choosing different
blur kernels for each frame. In [14], Li et al. synthesized the
coprime blur kernels from two binary sequences and presented
an efficient deblurring algorithm. They also highlighted the
importance of constructing a bank of blur kernels with flat
spectrum because it directly affects the security-level and the
quality of recovered videos.

Our complementary sets of fluttering patterns can be di-
rectly applied to design the coprime blur kernels in the same
manner6. Because we can generate diverse sets of fluttering

6According to [64], two different sequences are generally coprime. To
verify the coprimality of complementary pairs of sequences, we generated
120 complementary pairs of sequences of length 256 and confirmed that all
the pairs satisfy the coprimality by Euclid’s algorithm [65].
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TABLE II
QUANTITATIVE COMPARISON OF THE COPRIME BLUR SCHEME ON THE CAVIAR DATASET. WE COMPARE THE RESULTS FROM THE RANDOM SETS,

MURA [60], AND THE PROPOSED COMPLEMENTARY SETS USING THE SSIM MEASURE (MINIMUM / MAXIMUM / AVERAGE).

Dataset (# of frames) WalkByShop1front (2360) WalkByShop1cor (2360) Meet WalkTogether1 (700) TwoLeaveShop1front (1343)
Random sets 0.0000 / 1.0000 / 0.9786 0.3478 / 1.0000 / 0.9885 0.1504 / 0.9999 / 0.7054 0.1572 / 1.0000 / 0.9475
MURA [60] 0.2233 / 1.0000 / 0.9762 0.6460 / 1.0000 / 0.9899 0.0934 / 0.9998 / 0.4988 0.1870 / 1.0000 / 0.9307

Proposed 0.9793 / 1.0000 / 0.9989 0.9419 / 1.0000 / 0.9991 0.9817 / 0.9999 / 0.9873 0.9514 / 1.0000 / 0.9813

patterns with various lengths and flat spectrum, our method is
suitable to achieve both high-level security and high-quality
recovery.

We performed experiments to show the effectiveness of
our framework applied to the coprime blur scheme. We first
generate a pair of coprime blur kernel by using the modified
uniformly redundant array (MURA) [60], and ten pairs of
coprime blur kernels by using the random sample search [1]
and our complementary sequences. Then, we encrypt the
video7 by synthetically blurring each frame and decrypt it
according to the coprime method in [14]8. We report the
statistics of SSIM values on various datasets in Table II.

As an example, both the encryption and the decryption
results by the coprime method are shown in Fig. 15. The odd
rows represent encrypted frames with coprime blur kernels and
the even rows show the deblurred results. The coprime method
consistently produces high-quality reconstruction results with
our complementary sequences while it suffers from severe
artifacts in some cases when other sequences are used. This
is because the random sample search fails to generate good
sequences with long length due to the large search space as
discussed in [2] and the MURA includes deep dips that result
in spectral leakage as shown in [1]. On the other hand, our
complementary sequences are able to produce good sequence
pairs with various length and sets.

VII. DISCUSSION

In this paper, we presented a novel coded exposure frame-
work for multi-image deblurring based on the new concept
of complementary sets of fluttering patterns. The proposed
method preserves all frequencies in the blurring process by
applying different shutter patterns at each frame. Our work
essentially combines the coded exposure imaging and the
varying exposure video, taking advantages of the two meth-
ods to yield superior deblurring results. The effectiveness
of the proposed framework has been demonstrated by both
the theoretical analysis of the optimal boundaries and many
experiments. Our complementary sets can also be applied to
the video privacy protection for video surveillance as well as
motion deblurring.

One limitation of the proposed method is the difficulty of
the hardware implementation. Our method requires a machine
vision camera supporting a trigger mode 5, while the varying
exposure video method [12] can work with an auto exposure
bracketing mode in consumer DSLR cameras. However, we
have shown that our method achieves a big improvement in

7dataset: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
8We used the deblurring code by the author to decrypt the video -

http://fengl.org/publications/

terms of SNR in deblurring images over other methods. The
proposed framework can be applicable for defect detection in
a manufacturing system and event detection in a surveillance
system where there is inevitable large motion blur due to a
high-speed conveyor belt and fast moving objects. We also
expect that new commercial cameras equipped with a high-
speed global shutter [66], [67] will ease the implementation
of our framework in the near future.

Another limitation is that we only solve for a 1D linear blur
of a constant velocity object. Although many object motions
such as a walking person or a moving car result in 1D motion
blur as mentioned in [1], [68], more general PSF estimation
such as spatially varying blur will be a promising direction in
the future.

As the future work, we would like to explore further
applications of the proposed framework such as multi-image
super-resolution and robotics applications. It has been shown
that a higher resolution image can be recovered from blurred
image sequences [69], [70] and we can potentially enhance
the resolution of the deblurred image from our flutter shutter
camera. We also believe that the proposed system can improve
the performance of a robot vision system that needs to restore
blurry images due to rapid motion [52].
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Fig. 13. Multiple objects deblurring with different velocities and directions.
Blur size of the car (close) and the panel (far) (unit: pixel): (a) 50 and 45.
(b,c,d) [36 44 39] and [25 31 27]. (e) [46 50 52] and [35 38 44].

(a) Coded Exposure [1]

(b) Pixel-wise Blur Estimation [52]

(c) Soft Segmentation [53]

(d) Varying Exposure [12]

(e) Proposed

Fig. 14. Outdoor Experiment. Blur size of the car (close) and the panel (far)
(unit: pixel): (a) 80. (b,c,d) [60 67 75]. (e) [80 80 82].
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1856, 1946, 2193 from the left to right) of the “WalkByShop1front” video.

[12] A. Agrawal, Y. Xu, and R. Raskar, “Invertible motion blur in video,” in
Proceedings of ACM SIGGRAPH, 2009.

[13] H.-G. Jeon, J.-Y. Lee, Y. Han, S. J. Kim, and I. S. Kweon, “Complemen-
tary sets of shutter sequences for motion deblurring,” in Proceedings of
IEEE International Conference on Computer Vision (ICCV), 2015.

[14] F. Li, Z. Li, D. Saunders, and J. Yu, “A theory of coprime blurred pairs,”
in Proceedings of IEEE International Conference on Computer Vision
(ICCV), 2011.

[15] W. H. Richardson, “Bayesian-based iterative method of image restora-
tion,” Journal of the Optical Society of America, vol. 62, pp. 55–59,
1972.

[16] L. B. Lucy, “An iterative technique for the rectification of observed
distributions,” Astronomical Journal, vol. 79, pp. 745–754, 1974.

[17] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary
Time Series. The MIT Press, 1964.

[18] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image deblurring with
blurred/noisy image pairs,” ACM Transactions on Graphics, vol. 26,
no. 3, 2007.

[19] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Blind motion deblurring using
multiple images.” Journal of Computational Physics, vol. 228, no. 14,
pp. 5057–5071, 2009.

[20] J. Chen, L. Yuan, C. keung Tang, and L. Quan, “Robust dual motion
deblurring,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2008.

[21] S. Cho, J. Wang, and S. Lee, “Video deblurring for hand-held cameras
using patch-based synthesis,” ACM Transactions on Graphics, vol. 31,
no. 4, pp. 64:1–64:9, 2012.

[22] M. Delbracio and G. Sapiro, “Burst deblurring: Removing camera shake
through fourier burst accumulation,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.

[23] O. Shahar, A. Faktor, and M. Irani, “Space-time super-resolution from a
single video,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

[24] E. Shechtman, Y. Caspi, and M. Irani, “Space-time super-resolution,”
IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), vol. 27, no. 4, pp. 531–545, 2005.



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, AUGUST 2016 15

[25] K. Sato, S. Ishizuka, A. Nikami, and M. Sato, “Control techniques
for optical image stabilizing system,” IEEE transactions on Consumer
Electronics, vol. 39, no. 3, pp. 461–466, 1993.

[26] R. Chereau and T. P. Breckon, “Robust motion filtering as an enabler to
video stabilization for a tele-operated mobile robot,” in SPIE Security+
Defence, 2013.

[27] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and
D. J. Brady, “Coded aperture compressive temporal imaging,” Optics
Express, vol. 21, no. 9, pp. 10 526–10 545, 2013.

[28] D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. Nayar,
“Efficient space-time sampling with pixel-wise coded exposure for high
speed imaging,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 36, no. 2, pp. 248–260, 2014.

[29] D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2C2: Programmable
pixel compressive camera for high speed imaging,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2011.

[30] S. McCloskey, “Temporally coded flash illumination for motion deblur-
ring,” in Proceedings of IEEE International Conference on Computer
Vision (ICCV), 2011.

[31] J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe,
“Flutter shutter video camera for compressive sensing of videos,”
in Proceedings of IEEE International Conference on Computational
Photography (ICCP), 2012.

[32] H.-G. Jeon, J.-Y. Lee, Y. Han, S. J. Kim, and I. S. Kweon, “Generating
fluttering pattern with low autocorrelation for coded exposure imaging,”
International Journal of Computer Vision (IJCV), pp. 1–18, 2016.

[33] C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE
Transactions on Information Theory, vol. 18, no. 5, pp. 644–652, 1972.

[34] C. Cook, Radar signals: An introduction to theory and application.
Elsevier, 2012.

[35] P. Spasojevic and C. N. Georghiades, “Complementary sequences for ISI
channel estimation,” IEEE Transactions on Information Theory, vol. 47,
no. 3, pp. 1145–1152, 2001.

[36] J. M. Jensen, H. E. Jensen, and T. Høholdt, “The merit factor of binary
sequences related to difference sets,” IEEE Transactions on Information
Theory, vol. 37, no. 3, pp. 617–626, 1991.

[37] A. Ukil, “Low autocorrelation binary sequences: Number theory-based
analysis for minimum energy level, barker codes.” Digital Signal Pro-
cessing, vol. 20, no. 2, pp. 483–495, 2010.

[38] M. Soltanalian, M. M. Naghsh, and P. Stoica, “A fast algorithm for
designing complementary sets of sequences,” Signal Processing, vol. 93,
no. 7, pp. 2096–2102, 2013.

[39] S. McCloskey, “Velocity-dependent shutter sequences for motion de-
blurring,” in Proceedings of European Conference on Computer Vision
(ECCV), 2010.

[40] M. G. Parker, K. G. Paterson, and C. Tellambura, Golay Complementary
Sequences. In Wiley Encyclopedia of Telecommunications, 2003.

[41] P. Fan, N. Suehiro, N. Kuroyanagi, and X. Deng, “Class of binary
sequences with zero correlation zone,” in Electronics Letters, vol. 35,
no. 10, 1999, pp. 777–779.

[42] A. Agrawal and Y. Xu, “Coded exposure deblurring: Optimized codes
for PSF estimation and invertibility,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2009.

[43] S. Dai and Y. Wu, “Motion from blur,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

[44] Y.-W. Tai, N. Kong, S. Lin, and S. Y. Shin, “Coded exposure imaging
for projective motion deblurring.” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2010.

[45] A. Levin, D. Lischinski, and Y. Weiss, “A closed-form solution to natural
image matting,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 30, no. 2, pp. 228–242, 2008.

[46] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision (IJCV), vol. 60, no. 2, pp. 91–
110, 2004.

[47] J.-Y. Lee, Y. Matsushita, B. Shi, I. S. Kweon, and K. Ikeuchi, “Radio-
metric calibration by rank minimization,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), vol. 35, no. 1, pp. 144–156,
2013.

[48] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth
from a conventional camera with a coded aperture,” ACM Transactions
on Graphics, vol. 26, no. 3, 2007.

[49] S. Kim, Y.-W. Tai, Y. Bok, H. Kim, and I. S. Kweon, “Two-phase ap-
proach for multi-view object extraction,” in Proceedings of International
Conference on Image Processing (ICIP), 2011.

[50] L. Xu and J. Jia, “Two-phase kernel estimation for robust motion
deblurring,” in Proceedings of European Conference on Computer Vision
(ECCV), 2010.

[51] J. Pan, D. Sun, H. Pfister, and M.-H. Yang, “Blind image deblurring
using dark channel prior,” 2016.

[52] T. H. Kim and K. M. Lee, “Generalized video deblurring for dynamic
scenes,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[53] J. Pan, Z. Hu, Z. Su, H.-Y. Lee, and M.-H. Yang, “Soft-segmentation
guided object motion deblurring,” 2016.

[54] W.-S. Lai, J.-B. Huang, Z. Hu, N. Ahuja, and M.-H. Yang, “A compar-
ative study for single image blind deblurring,” 2016.

[55] R.W.Franzen. (1999, Jun.) Kodak lossless true color image suite.
[Online]. Available: http://http://www.r0k.us/graphics/kodak/

[56] Y. Y. Schechner, S. K. Nayar, and P. N. Belhumeur, “Multiplexing for
optimal lighting,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), vol. 29, no. 8, pp. 1339–1354, Aug 2007.

[57] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing (TIP), vol. 13, no. 4, pp. 600–612,
2004.

[58] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight using
an RGB-D camera,” in International Symposium on Robotics Research
(ISRR), 2011.

[59] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol. 23, no. 11, pp. 1222–1239, 2001.

[60] S. R. Gottesman and E. Fenimore, “New family of binary arrays for
coded aperture imaging,” Applied Optics, vol. 28, no. 20, pp. 4344–
4352, 1989.

[61] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and C. Jawahar, “Ef-
ficient privacy preserving video surveillance,” in Proceedings of IEEE
International Conference on Computer Vision (ICCV), 2009.

[62] A. Chattopadhyay and T. E. Boult, “Privacycam: a privacy preserving
camera using uclinux on the blackfin dsp,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

[63] F. Pittaluga and S. J. Koppal, “Privacy preserving optics for miniature
vision sensors,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[64] E. Kaltofen, Z. Yang, and L. Zhi, “On probabilistic analysis of random-
ization in hybrid symbolic-numeric algorithms.” in Proceedings of the
international workshop on Symbolic-numeric computation, 2007.

[65] E. K. Donald, “The art of computer programming,” Sorting and search-
ing, vol. 3, pp. 426–458, 1999.

[66] “Panasonic develops 10 times higher saturation & highly functional
global shutter technology by controlling of organic-photoconductive-
film on cmos image sensor,” http://news.panasonic.com/global/press/
data/2016/02/en160203-6/en160203-6.html.

[67] “Jvc gy-hm100u,” http://pro.jvc.com/prof/attributes/tech desc.jsp?
model id=MDL101845&feature id=02.

[68] A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman, “Motion-
invariant photography,” ACM Transactions on Graphics, vol. 27, no. 3,
pp. 71:1–71:9, 2008.

[69] E. Faramarzi, D. Rajan, and M. P. Christensen, “Unified blind method
for multi-image super-resolution and single/multi-image blur deconvo-
lution,” IEEE Transactions on Image Processing (TIP), vol. 22, no. 6,
pp. 2101–2114, 2013.

[70] A. Agrawal and R. Raskar, “Resolving objects at higher resolution from
a single motion-blurred image.” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2007.

http://http://www.r0k.us/graphics/kodak/
http://news.panasonic.com/global/press/data/2016/02/en160203-6/en160203-6.html
http://news.panasonic.com/global/press/data/2016/02/en160203-6/en160203-6.html
http://pro.jvc.com/prof/attributes/tech_desc.jsp?model_id=MDL101845&feature_id=02
http://pro.jvc.com/prof/attributes/tech_desc.jsp?model_id=MDL101845&feature_id=02


SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, AUGUST 2016 16

Hae-Gon Jeon received the BS degree in Electrical
and Electronic Engineering from Yonsei University
in 2011, and the MS degree in Electrical Engineering
from KAIST in 2013. From Aug. 2013 to Jan. 2015,
he worked as a researcher at the Personal Plug and
Play DigiCar Center. He is currently working toward
the Ph.D. degree in Electrical Engineering at KAIST.
His research interests include computational imaging
and 3D reconstruction. He is a recipient of the Sam-
sung HumanTech Paper Award and the Qualcomm
Innovation Award. He is a student member of the

IEEE.

Joon-Young Lee received the B.S degree in Elec-
trical and Electronic Engineering from Yonsei Uni-
versity, Korea in 2008. He received the M.S and
Ph.D degrees in Electrical Engineering from KAIST,
Korea in 2009 and 2015, respectively. He is a
research scientist at Adobe Research. His research
interests include deep learning, computer vision, and
computational photography. He is a member of the
IEEE.

Yudeog Han received the B.S degree in Electronics
Engineering from Soongsil University in 2011, and
the M.S degree in Division of Future Vehicle from
KAIST in 2013. He joined Agency for Defense
Development in 2013. He is a recipient of the Sam-
sung HumanTech Paper Award and the Qualcomm
Innovation Award. His research interests include
computational photography and 3D reconstruction.

Seon Joo Kim received the BS and MS degrees from
Yonsei University, Seoul, Korea, in 1997 and 2001.
He received the PhD degree in computer science
from the University of North Carolina at Chapel
Hill in 2008. He is an assistant professor at the
Department of Computer Science, Yonsei University
since March 2013. His research interests include
computer vision, computer graphics/computational
photography, and HCI/visualization. He is a member
of the IEEE.

In So Kweon received the B.S. and M.S. degrees
in Mechanical Design and Production Engineering
from Seoul National University, Seoul, Korea, in
1981 and 1983, respectively, and the Ph.D. degree in
Robotics from the Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, in 1990. He
worked for the Toshiba R&D Center, Japan, and
joined the Department of Automation and Design
Engineering, KAIST, Seoul, Korea, in 1992, where
he is now a professor with the Department of Elec-
trical Engineering. His research interests are sensor

fusion, color modeling and analysis, visual tracking, and visual SLAM. He
was the general chair for the Asian Conference on Computer Vision 2012
and he is on the honorary board of the International Journal of Computer
Vision (IJCV). He has been serving as a director for the Personal Plug and
Play DigiCar Center which is one of the National Core Research Center since
2010. He was a member of ‘Team KAIST’ which won the first place in DARPA
Robotics Challenge Finals 2015.


