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Abstract The performance of coded exposure imag-

ing critically depends on finding good binary sequences.

Previous coded exposure imaging methods have mostly

relied on random searching to find the binary codes,

but that approach can easily fail to find good long

sequences, due to the exponentially expanding search

space. In this paper, we present two algorithms for gen-

erating the binary sequences, which are especially well

suited for generating short and long binary sequences,

respectively. We show that the concept of low auto-

correlation binary sequences, which has been success-

fully exploited in the field of information theory, can

be applied to generate shutter fluttering patterns. We

also propose a new measure for good binary sequences.

Based on the new measure, we introduce two new al-

gorithms for coded exposure imaging - a modified Leg-
endre sequence method and a memetic algorithm. Ex-

periments using both synthetic and real data show that

our new algorithms consistently generate better binary

sequences for the coded exposure problem, yielding bet-

ter deblurring and resolution enhancement results com-
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pared to previous methods of generating the binary

codes.
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1 Introduction

Image deblurring is one of the most common problems

in computer vision. The goal of deblurring is to recover

a sharp latent image from an image that is blurred due

to the motion of the subject or the camera. Although

a solution for the image deblurring problem has been

sought for the last few decades, it remains a challenging

problem today.

One deblurring approach that has shown promising

results is to tackle the problem in an active manner by

changing the way images are captured in a camera.

The technique, which is called coded exposure pho-

tography (Raskar et al. 2006), flutters the camera’s

shutter open and closed in a special manner within

the exposure time, in order to preserve the spatial fre-

quencies, thereby simplifying the subsequent deblurring

problem. A key aspect in coded exposure imaging is the

generation of the fluttering pattern of the shutter (the

binary sequence).Well-chosen fluttering patterns pre-

serve the spatial frequencies in the captured blurred

image while also minimizing deconvolution noise.

Although fluttering the camera’s shutter results in

less received light compared to a conventional shutter,

the coded exposure process using a flutter sequence re-

ported in (Raskar et al. 2006) still showed a perfor-

mance gain when the incident illumination was lower

than 100 lux (indoor lighting) in (Cossairt et al. 2013).

Performance can also be significantly improved if flut-

tering patterns with a flatter spectrum are used.
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Long binary sequences are essential for various ap-

plications of the coded exposure process. In previous

works, a near optimal binary sequence was computed

using a randomized linear search (Agrawal and Raskar

2007; Agrawal and Xu 2009; Raskar et al. 2006) or a

priority search (McCloskey 2010) over the space of po-

tential sequences. But while these methods can be used

to generate short sequences, they are not suitable for

computing long binary sequences because of the large

search space.

For super-resolution from a single blurred image

in (Agrawal and Raskar 2007), higher resolution en-

hancement was achieved when long fluttering patterns

with flat spectrums were utilized. In (Gorthi et al. 2013),

a coded fluorescence imaging device required long se-

quences (which can extend to 50 times the traditional

exposure) to capture fast traveling cells with a high sig-

nal to noise ratio.

Finding binary sequences with low autocorrelation

is a problem that has been deeply studied in the fields

of information theory and physics, because it relates

to many applications in telecommunications (e.g., syn-

chronization, pulse compression and, especially, radar),

physics (e.g., Ising spin glasses) and chemistry (Gal-

lardo et al. 2009). The Barker sequence (Borwein et al.

2007) is considered to be the optimal binary sequence,

however the sequence length only goes up to 13. Mertens

(Mertens 1996) proposed an exhaustive search method

to obtain near-optimal binary sequences up to length

48, and Gallardo et al. (Gallardo et al. 2009) intro-

duced a memetic algorithm for generating near-optimal

sequences up to 60. These methods are not universally

applicable due to the heavy computational burden. In-

stead, theoretical methods have been widely used to

generate near-optimal binary sequences of any length.

Representative methods include the Jacobi (Jedwab

2005), the modified Jacobi (Xiong and Hall 2011), and

the Legendre sequence. Among those methods, the Leg-

endre sequence has shown advantages over the other

methods, especially in terms of computational time and

the autocorrelation measure (Jedwab 2005). Baden (Baden

2011) presented a sequence optimization algorithm us-

ing those theoretical sequences as initial estimates.

In this paper, we introduce two algorithms for gen-

erating binary sequences for coded exposure imaging.

We show that the low autocorrelation binary sequence

concept can be applied to generate the fluttering pat-

tern of a shutter, and propose the modified Legendre

sequence and a memetic algorithm. The proposed algo-

rithms consistently generate better binary sequences for

the coded exposure problem, yielding better deblurring

and resolution enhancement results compared to previ-

ous methods of generating the binary codes.

The two algorithms that we propose in this paper

are complementary to each other in terms of sequence

length. For generating short sequences, the memetic

search algorithm has the advantages of sequence qual-

ity and reasonable computational time, while the mod-

ified Legendre sequence is useful for generating longer

sequences because of its computational efficiency.

We found that the memetic algorithm outperformed

previous search-based algorithms (Raskar et al. 2006;

Agrawal and Raskar 2007; McCloskey et al. 2012) with

similar computational time by efficiently exploring the

search space. The modified Legendre sequence gener-

ated good sequences in a much shorter time (several or-

ders of magnitude), especially when the sequence length

was large, in cases where the previous methods failed

to find good binary codes due to the exponentially ex-

panding search space.

2 Previous Works

Image deblurring is a classic problem in computer vi-

sion and has been actively studied for the last several

decades. Traditional solutions to the problem include

the Richardson-Lucy (Lucy 1974; Richardson 1972) and

Wiener filters (Wiener 1964), but several new directions

have been explored recently to enhance deblurring per-

formance. Fergus et al. (Fergus et al. 2006) took a sta-

tistical approach in a variational Bayesian framework

by using a natural image prior to the image gradients,

while Shan et al. (Shan et al. 2008) incorporated spa-

tial parameters to enforce the natural image statistics,

using a local ringing suppression. In (Levin et al. 2007),
Levin et al. proposed a solution for defocus blur using

a coded aperture and a sparse natural image prior to

produce sharper edges and reduce undesirable ringing

artifacts. We refer to (Levin et al. 2009) for a compre-

hensive review of the deblurring literature.

In (Raskar et al. 2006), Raskar et al. introduced

coded exposure photography, a motion deblurring method

using the fluttering shutter. Rather than having the

shutter open for the entire exposure duration, they flut-

tered the camera’s shutter open and closed during the

exposure using a binary pseudo-random sequence (Raskar

et al. 2006). With the fluttered shutter, spatial details

in the blurred image are preserved, making the deconvo-

lution a well-posed problem. Tai et al. presented a spa-

tially varying PSF estimation algorithm which jointly

utilized a coded exposure camera and simple user inter-

actions in (Tai et al. 2010), while McCloskey et al. fur-

ther addressed the problem of motion deblurring using

coded exposure, by analyzing the design and estimation

of the coded exposure PSF in (McCloskey et al. 2012).
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The idea of coded exposure photography was also

extended to a resolution enhancement application in

(Agrawal and Raskar 2007). As expected, the fluttering

pattern of the camera shutter plays a critical role in de-

termining the performance of the coded exposure imag-

ing. Agrawal and Xu proposed a method for finding

optimized codes for both PSF estimation and invert-

ibility in (Agrawal and Xu 2009). McCloskey presented

the idea that the shutter sequence must be dependent

on the object velocity, and proposed a method for com-

puting the velocity-dependent sequences in (McCloskey

2010).

To actually compute the binary sequence, previous

works have relied on either a random sample search

(Agrawal and Raskar 2007; Agrawal and Xu 2009; Raskar

et al. 2006) or a priority search (McCloskey 2010) over

the space of potential sequences. Natural image statis-

tics were incorporated to generate binary sequences for

a coded aperture (Zhou et al. 2011) and coded expo-

sure (McCloskey et al. 2012). While these search based

methods can produce good binary sequences of short

lengths, they are computationally infeasible for long se-

quences because of the large search space.

This paper is an extended version of (Jeon et al.

2013). We additionally introduce a new search based

algorithm, which will be presented in Section 5. The

new algorithm is especially suited for generating short

sequences, which is complementary to the modified Leg-

endre sequence method presented in (Jeon et al. 2013).

We also present additional experiments as well as more

detailed discussion.

3 Measure of a Good Binary Sequence

Assuming spatially-invariant motion blur, the blur pro-

cess is modeled as follows:

B = AI + n, (1)

where B, I and n represent the blurred image, the latent

sharp image, and the noise, respectively. The matrix A

is called the smearing matrix, which describes the con-

volution of the latent input image with a point spread

function.

The principal idea behind the coded exposure is to

improve the invertibility of the imaging process (the in-

vertibility of the smearing matrix A) through the flut-

tered shutter (see Fig. 1 (a)(b)). Denoting a binary

sequence of length n as U = [u0, . . . , un−1], a near-

optimal binary code is computed through a randomized

linear search with the following conditions in (Raskar

et al. 2006):

(i) argmax
U

min(|F(U)|),
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Fig. 1 Coded exposure and the measure of a good binary
sequence. (a) In a traditional camera, some information are
lost at frequencies with MTF value of 0, making the deblur-
ring problem an ill-posed problem. (b) By using the coded
exposure, the information are preserved and the deblurring
problem becomes invertible. (c) The merit factor is a good
measure of the variance of the MTF (deconvolution noise),
but it may make the spectrum partially peaky. (d) The pro-
posed coded factor is a good measure of a binary sequence,
which minimizes the variance of the MTF while maximizing
the lowest MTF value.

(ii) argmin
U

var(|F(U)|) or argmin
U

mean
(
ATA

)−1

where F(U) is the discrete Fourier transform of the bi-

nary sequence and its absolute value |F(U)| is a mag-

nitude of frequency response of binary sequence (MTF:

Modulation Transfer Function). Condition (i) relates to

preserving the spatial frequency in a blurred image, and

condition (ii) describes the variance of the MTF or the

deconvolution noise.

3.1 Merit Factor

As mentioned earlier, finding binary sequences is also of

importance in the field of information (coding) theory.

In information theory, the merit factor is widely used as

the criterion of “goodness” for binary sequences whose

aperiodic autocorrelations are collectively small. For a

binary sequence U = [u0, u1, · · · , un−1], the merit fac-

tor M(U) is defined as follows:

M(U) =
n2

2
∑n−1
k=1 a

2
k

, (2)
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where ak is the aperiodic autocorrelation at shift k given

by

ak =

n−k−1∑
i=0

uiui+k. (3)

The merit factor is closely related to the signal to

self-generated noise ratio, which corresponds to the de-

convolution noise in the coded exposure imaging. In

(Jensen et al. 1991), the relation between the merit

factor and the spectral properties of the sequence is

denoted as

n−1∑
k=1

a2k =
1

2

∫ π

−π

[
|F(U)|2 − n

]2
dω, (4)

where ω represents frequency. For a fixed sequence of

length n, Eq. (4) shows that the merit factor measures

how much the amplitude spectrum of the sequence de-

viates from the constant value n. Therefore, a sequence

with a higher merit factor has a flatter MTF. This cor-

responds to condition (ii) of the binary sequence mea-

sure for coded exposure and we can rewrite the merit

factor as follows:

M(U) =
n2∫ 1

0
[|F(U)|2 − n]2dθ

' n2

var(|F(U)|)
. (5)

3.2 Coded Factor

While the merit factor is a good criterion for measur-

ing the MTF variance, it can make the amplitude spec-

trum partially peaky, which prevents the system from

preserving the details of a blurred image. As shown

in Fig. 1(c), the MTF of the binary sequence shows

a peaky spectrum even though its merit factor is about

6.1. In contrast, the binary sequence in Fig. 1(d) is more

suitable for coded exposure imaging, even though its

merit factor is about 5.8. To deal with this problem,

we define a new measure called the coded factor (FC)

to measure the quality of a binary sequence for coded

exposure imaging:

FC(U) = M(U) + λmin[log(|F(U)|)], (6)

where λ is the weighting parameter for balancing the

two terms and log is used for normalizing the scales

between the two terms.

We should note that Eq. (3) is derived with the bi-

nary sequence taking the value {−1, 1}. However, the

binary sequence for the coded exposure should take the

value {0, 1}, since the value -1 is physically infeasible.

If we change the sequence ui ∈ {−1, 1} to ûi ∈ {0, 1}

by substituting 0 for −1, the aperiodic autocorrelation

of U is computed as

ak = 4âk + 4m

n−k−1∑
i=0

(ûi + ûi+k + 3µ− 0.5), (7)

where â and µ represent the autocovariance and the

mean of Ĉ, respectively. The derivation of Eq. (7) is

provided in Appendix 1. In Eq. (7), m = µ−0.5, which

becomes 0 with the assumption that the sequence is

balanced with an equal number of zeros and ones for

optimal autocorrelation properties (Lempel et al. 1977).

Therefore, we use the following equation for computing

the merit factor from a binary sequence of 0’s and 1’s.

ak ≈ 4âk. (8)

4 Modified Legendre Sequence for Coded

Exposure

Although the importance of both terms in Eq. (6) are

addressed in (Raskar et al. 2006), a solution for find-

ing a good binary sequence that simultaneously sat-

isfies both conditions is not provided. Instead, they

rely on a randomized linear search that only consid-

ers min[log(|F(U)|)] in Eq. (6). To deal with this issue,

we find a solution that can take both terms into account

and return the maximum coded factor FC . For this, we

turn to the Legendre sequence.

The Legendre sequence (Golay 1983) is a binary

sequence with a high merit factor, and is among the

most popular choices for generating binary sequences

in many different fields. The Legendre sequence of a

prime length n is defined as

ui =

{
1 if i = 0,(
i
n

)
if i > 0,

(9)

where u and i represent an element value and the index

of the sequence, respectively.
(
i
n

)
is the Legendre symbol

that takes the value 1 if i is a quadratic residue modulo

n and the value 0 otherwise 1.

The advantages of using the Legendre sequence over

a random binary sequence search for the coded expo-

sure include higher quality sequences with high merit

factor, as well as much less computational load, since

the Legendre sequence is solved in a closed form. Al-

though the Legendre sequence can ensure a high merit

factor M(U), it does not guarantee the highest coded

factor since it does not consider |F(U)|. Therefore, to

further improve the quality of the Legendre sequence

1 Note that either {0, 1} or {−1, 1} can be used to represent
the sequence value as shown in (No et al. 1996).
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for coded exposure imaging, we propose an algorithm

for generating a modified Legendre sequence by apply-

ing three sequence operations: rotating, appending, and

flipping to find the sequence with the maximum coded

factor FC(U) in Eq. (6).

4.1 Rotating

The merit factor of a Legendre sequence can be im-

proved by rotating the sequence in a cyclic manner as

shown in (Høholdt and Jensen 1988). For a given se-

quence U , an r-rotated Legendre sequence V r is defined

as

V r = (Ur+1:n;U1:r) , (10)

where Ui:j is the sub-sequence of U from the ith to the

jth element and (; ) represents an operator for concate-

nating the two sequences. We search for the enhanced

sequence in terms of the coded factor among all the

candidate sequences V r (0 ≤ r ≤ n− 1).

4.2 Appending

In (Borwein et al. 2004), Borwein et al. proved that ap-

pending the initial part of a rotated Legendre sequence

to itself can improve the merit factor of the sequence.

We adopt the appending operation to improve the se-

quence quality as well as to resolve a restraint of the

Legendre sequence that it is only defined for a length

of a prime number.

From an r-rotated Legendre sequence V r, a t-appended

Legendre sequence is obtained by appending the first t
(0 ≤ t ≤ n−1) elements of the sequence to itself, and it

is denoted as Y t = (V r; (V r)0:t−1). Using the sequence

appending operation, the modified Legendre sequence

with a length m can be generated from any rotated Leg-

endre sequence with a prime length n for m
2 ≤ n ≤ m.

4.3 Flipping

In a recent work (Baden 2011), Baden presented an effi-

cient optimization method for the merit factor of binary

sequences by deriving a formulation for measuring the

change in the merit factor by the change of value in an

element (flipping) in the sequence. The formulation is

given by

δj = −8yj((Λ ? Y )j + (Λ ? Y γ)m+1−j)

+8(Y ? Y γ)m+1−2j + 8(m− 2), (11)

where δj is the change in the autocorrelation due to the

flipping of the element j, ? represents the convolution

Algorithm 1 Optimization by Flipping

1: procedure OptimizeSequence(sequence = Y )

2: Ŷ = Y
3: FC(Ŷ ) = coded factor of Ŷ

4: ∆ = candidate set of Ŷ
5: n∆ = the number of candidates in ∆
6: for i = 1 to n∆ do
7: FC(Y ′) = max(FC) with i-bits flipping in ∆

8: if FC(Y ′) > FC(Ŷ ) then

9: Ŷ = Y ′

10: go to line 3
11: end if
12: end for
13: return Ô
14: end procedure

operator, Λ = [a1, · · · , am] is an aperiodic autocorrela-

tion of the binary sequence Y of length m, and γ indi-

cates the reversal of a sequence where yγj = ym−j+1.

From Eq. (11), a candidate set of element indices

that are expected to improve the merit factor is chosen

as

∆1 = {j|δj > 0}. (12)

To extend the above optimization method to the

coded factor, we compute the change in the minimum

of MTF by a single-element flip, as follows:

κj =

{
min |F(Y ) + F(yj)| −min |F(Y )| if yj = 0,

min |F(Y )−F(yj)| −min |F(Y )| if yj = 1,

s.t. F(yj) = e−iω(j+0.5) 2

ω
sinω, (13)

where F(yj) is the DFT of a single element yj . Thus,

the candidate set ∆2 is determined by

∆2 = {j|κj > 0}. (14)

The two sets ∆1 and ∆2 are then combined to con-

struct a new candidate set ∆ (∆ = ∆1 ∪ ∆2). Since

∆1 is related to the merit factor and ∆2 is related to

the MTF minimum, the new candidate set ∆ includes

potential element indexes that can improve the coded

factor FC (Eq. 6). To determine the elements to flip

among the candidates, we apply a variant of the steep

decent algorithm in (Baden 2011), which is described

in Algorithm 1. Since the number of candidates in ∆ is

usually small, the computational load for Algorithm 1

is small.

4.4 Algorithm Summary

Our framework for generating a binary sequence for the

coded exposure imaging is summarized in Algorithm 2.
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(a) Legendre Sequence (b) Rotation (c) Appending (d) Flipping

Fig. 2 An example of MTF changes according to each sequence operation. The horizontal lines in (c)&(d) indicate the
minimum MTF of the sequence (c).

Algorithm 2 Modified Legendre Sequence

1: procedure GenerateSequence(length = m)
2: n = {ni|m2 ≤ ni ≤ m,ni is prime number}
3: for all ni in n do
4: Ui = Legendre Sequence of length ni in Eq. (9)
5: Vi = Rotating(Ui)
6: Yi = Appending(Vi)
7: end for
8: O = Yi with the highest coded factor
9: Ô = Optimization by Flipping(O) in Algorithm 1

10: return Ô
11: end procedure

To generate a sequence of length m, we first generate

Legendre sequences with length n, which is a collec-

tion of prime numbers in the range between m
2 and m

(n = {ni|m2 ≤ ni ≤ m,ni is prime number}). We then

find the ri-rotated Legendre sequence using the rotat-

ing operation for each Legendre sequence and apply

the appending operation for all the rotated sequences

to make length m sequences. Among the candidate se-

quences, we select a sequence with the highest coded

factor and perform the optimization using the flipping

operation. An example of MTF changes according to

each sequence operation is shown in Fig. 2.

5 Memetic Algorithm for Coded Exposure

In previous searching based algorithms (Raskar et al.

2006; McCloskey et al. 2012), there is a trade-off be-

tween the quality of binary sequences and the computa-

tional time. Although our modified Legendre sequence

rarely suffers from the trade-off and consistently gener-

ates high quality sequences, a searching based approach

is still useful, especially for short sequences, because a

globally optimal solution can be found when an exhaus-

tive search is performed.

In this section, we present a new algorithm to take

advantage of the searching based approach. To extend

the applicability of the searching based approach, we

apply an efficient searching algorithm based on the memetic

Algorithm 3 Memetic Algorithm

1: procedure SearchSequence(length = m)
2: Initialize a candidate set Ω of binary sequences.
3: while termination condition is not satisfied do
4: {O,U} = Select two sequences in Ω
5: O = Recombination(O,U, Pr)
6: O = Mutation(O,Pm)
7: O = LocalSearch(O)
8: Ω = Update(Ω,O)
9: end while

10: Ô = Select the best sequence in Ω
11: return Ô
12: end procedure

algorithm (Chen et al. 2011), which is widely used in the

evolutionary computing field. The memetic algorithm is

an extension of the traditional genetic algorithm with

a local searching method.

Based on the traditional genetic algorithm, a candi-

date set of binary sequences are first generated. Then,

we stochastically perform a recombination and muta-

tion of codes in order to avoid getting stuck in subop-

timal regions. To find a suboptimal sequence in a can-

didate sequence, we execute a local search and update

the candidate set by replacing the sequence having the

highest coded factor in the set with the optimized se-

quence. The procedure is repeated until a termination

condition is satisfied. The overall procedure is summa-

rized in Algorithm 3, where Pr and Pm represent the

occurrence probabilities of the recombination and the

mutation procedure, respectively. In the following sub-

sections, we describe more details about each step.

5.1 Memetic Algorithm

The memetic algorithm is an iterative method that up-

dates a set of candidate solutions by an evolutionary

process. The first step in the memetic algorithm is to

generate an initial candidate set. In general, a memetic

algorithm organizes an initial candidate set by generat-

ing random sequences (Gallardo et al. 2009). The per-
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formance of the memetic algorithm degrades when the

sequence length n is increased since the search space ex-

ponentially grows with the sequence length. As a better

choice for an initial set, we adopt skew-symmetric se-

quences. In (Mertens 1996), Mertens showed that skew-

symmetric sequences reduce the effective size of the

computation by a factor of 2 when searching long length

sequences. A skew-symmetric sequence S is defined as

(Golay 1977)

sL+j =

{
sL−j if j is even,

s̃L−j if j is odd,
for j = 1, · · · , L− 1

s.t. L =

{
n/2 if n is even,

(n+ 1)/2 if n is odd,
(15)

where si is the ith element of S and ·̃ is a negation

operation. The first half of a skew-symmetric sequence

S1:L is randomly generated.

In Fig. 3, we experimentally demonstrate the change

in performance based on the choice of initial sequences2.

For short length sequences, randomly generated sequences

are better than skew-symmetric sequences (n ≤ 80). On

the other hand, skew-symmetric sequences show bet-

ter performances for long length sequences. We observe

that the randomly generated sequences are good initial

seeds because the memetic algorithm can make vari-

ous attempts to find optimal sequences in small search

spaces while well-constrained initial seeds like the skew-

symmetric sequences work well in large search spaces.

We also tested how performance varied when the

Legendre sequences consisted of the initial sets. The

Rotating in Sec. 4.1 and the Appending in Sec. 4.2 can

create multiple candidate sets. As shown in Fig. 3 (blue

and red lines), the coded factors are visibly increased

for short sizes, but the performance improvement for

long sequences is marginal. Since Legendre sequences

provide a finite set of candidates, we cannot expect

Legendre sequences to provide enough freedom for the

memetic algorithm to explore the large space.

To avoid getting stuck in suboptimal solutions, re-

combination and mutation are performed as a meta-

heuristic scheme. For the recombination, we randomly

select two sequences {O, V } in the candidate set and

make a new sequence O∗ by combining the two subse-

quences as

O∗ = (O1:n;Vn+1:m), (16)

where Oi:j is the sub-sequence of O from the ith to the

jth element, n is a slicing point of the two sequences,

and (; ) represents an operator for concatenating the

2 We set the number of candidates to 100 for the experi-
ment.

Fig. 3 Comparisons of initial sequences generated from ran-
domly generated sequences, skew-symmetric sequences, and
Legendre sequences with regards to the sequence length.

two sequences. The slicing point n is determined ran-

domly and the occurrence probability of recombination

is set to 0.9.

In the mutation step, we randomly choose one to

three bits of a sequence and flip the chosen bits as

recommended in (Militzer et al. 1998). Militzer et al.

(Militzer et al. 1998) reported that multi-bit flipping

in the mutation step is beneficial for achieving low-

autocorrelation binary sequences compared to single bit

flipping. We set the occurrence probability of mutation

to 0.1.

The local search in the memetic algorithm reduces

the likelihood of a premature convergence and improves

the fitness of a candidate sequence. For the local search

method, we used the flipping operation as described in

Sec. 4.3. By exploiting the flipping operation, we ob-

tained a local optimal solution from a candidate se-

quence with low computation time, since the flipping

operation explores a local optimal solution in an effi-

cient optimization manner instead of an intensive local

search.

5.2 Termination Condition

The memetic algorithm is performed iteratively until a

termination condition is satisfied. The termination con-

dition is generally determined either by a fixed num-

ber of iterations or the fitness of the highest ranking

solution (Michalewicz 1996). However, without careful

heuristic parameter tunings, those termination condi-

tions may lead to over computations or premature con-

vergence.

We show the coded factor of the highest ranking so-

lution in Fig. 4 (a). In the figure, the highest coded fac-

tor has a tendency of stair-like transitions with regards

to the number of iterations. To set a better termination
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Fig. 4 Experiments with different termination conditions on
in the sequence length n. (a) The change of in the highest
coded factor according to the number of iterations. (b) The
change of in the sum of of the coded factor of all candidates
according to the number of iterations.
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Fig. 5 Computational times(log scale) for generating binary
sequences according to sequence length. The computational
time of the method (Raskar et al. 2006) depends on the num-
ber of samples, while the proposed method requires a shorter
time for all sequence lengths.

condition, we use the total sum of coded factors of all

candidate sequences. Our algorithm terminates when

the sum of coded factors does not change within a cer-

tain number of iterations. Fig. 4 (b) shows the change

in the total sum of coded factors versus the number

of iterations. The proposed termination condition ex-

plores all possibilities for improving the coded factor of

the candidates. Then, we select one binary sequence in

the candidate sets with the best coded factor Eq. (6).

Fig. 5 shows a comparison of the computational

times of the different algorithms. The computational

time of the random sample search method (Raskar et al.

2006) is determined by the number of iterations, while

the computational times of the modified Legendre se-

quence and the memetic algorithm increase according

to the sequence length. As will be shown in Sec. 6,

the proposed memetic algorithm delivers much better

performance with shorter computational time than the

random sample search method.

6 Experiments

To evaluate the performance of the proposed algorithm,

we conducted many coded exposure deblurring experi-

ments using both synthetic and real-world datasets. We

compared our results with the results obtained with the

methods proposed by Raskar et al. in (Raskar et al.

2006) and by McCloskey et al. in (McCloskey et al.

2012). For our method and the (Raskar et al. 2006)

method, binary sequences of length [30, 40, · · · , 200] were

generated. We used the code by the author3 to gener-

ate the sequences for the (Raskar et al. 2006) method

as well as to deblur the images.

The number of random samples Ns in the (Raskar

et al. 2006) method were set to 106 and 108 to man-

age the tradeoff between the computational time and

the sequence quality. The average computational times

taken to generate the sequences are shown in Fig. 5. The

sequences for the (McCloskey et al. 2012) method were

provided by the author for length [50, 60, · · · , 200]. The

λ in Eq. (6) was set to 8.5 for all of our experiments.

We used two deconvolution algorithms: (1) the matrix

inversion approach for the sake of comparing the perfor-

mance of previous methods and the proposed method,

and (2) non-blind deconvolution with hyper-Laplacian

prior (Krishnan and Fergus 2009) to maximize the qual-

ity of the deblurred images.

6.1 Quantitative Evaluations

We performed synthetic experiments for quantitative

evaluations. The synthetic data consisted of 29 high

quality images downloaded from Kodak Lossless True
Color Image Suite (Franzen 1999). Blurred images were

simulated by 1D filtering with the binary sequences

generated by each method and then adding intensity

dependent Gaussian noise with a standard deviation

σ = 0.01
√
i, where i is the noise-free intensity of the

blurred images in [0, 1] (Schechner et al. 2007). The

peak signal-to-noise ratio (PSNR) and the gray-scale

structural similarity (SSIM) (Wang et al. 2004) were

used as the quality metrics, which were calculated by

averaging the results of 29 synthetic images.

First, to show the effectiveness of the coded factor

as a measure of a good binary sequence for coded expo-

sure, we compared deblurring results using the binary

sequences generated by the merit factor and the coded

factor, which are shown in Fig. 6. The sequences gener-

ated by the coded factor show stable performance, while

the sequences generated by the merit factor sometimes

3 www.umiacs.umd.edu/~aagrawal/MotionBlur/

SearchBestSeq.zip

www.umiacs.umd.edu/~aagrawal/MotionBlur/SearchBestSeq.zip
www.umiacs.umd.edu/~aagrawal/MotionBlur/SearchBestSeq.zip
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Low 
Spectrum

Middle 
Spectrum

High 
Spectrum

(a) Legendre (Initial) (b) McCloskey et al. (c) Raskar et al. (d) Coded factor

Fig. 8 An example of MTF changes according to cost functions. A Legendre sequence with the length 100 is used as an initial
sequence and the optimization is done by partially flipping all combinations of change in 1, 2, and 3 bits.

Low spectral bands (0∼pi/3) Middle spectral bands (pi/3∼2pi/3) High spectral bands (2pi/3∼pi)
min. mean var. min. mean var. min. mean var.

Legendre (Initial) -15.2341 -10.5242 4.5454 -14.8233 -10.8800 1.3486 -13.6837 -11.0215 1.0372
McCloekey et al. -15.1381 -9.7462 5.6573 -13.6071 -10.0992 2.1356 -12.6881 -9.8547 1.4912

Raskar et al. -13.5823 -9.7978 5.9692 -13.5748 -10.6420 1.4908 -13.3213 -10.1791 1.5939
Coded factor -14.6124 -9.7467 5.2634 -13.4124 -10.1110 0.9451 -13.9681 -10.2067 0.8688

Table 1 Numerical analysis of MTFs in Fig. 8. Minimum, mean and variance of MTFs of the sequences are reported according
to spectral bands. We mark the best performance in bold. For minimum and mean, higher is better, and for variance, lower is
better.
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Fig. 6 Comparison of the merit factor and the coded factor
as a measure of a good binary sequence.

work poorly, especially in terms of the SSIM, due to the

peaky spectrum, as previously shown in Fig. 1(c).

Additionally, we compared the coded factor to the

cost functions used in (Raskar et al. 2006) and (Mc-

Closkey et al. 2012)4. To measure the effectiveness of

each cost function, we performed exhaustive local op-

timizations with the Legendre sequences as the initial

seeds. We first computed each cost function of the initial

binary sequence. We then found the 1-partial flip group,

which is the collection of all possible combinations of

4 In (McCloskey et al. 2012), the weighted sum of 6 metrics
was used: (1) the minimum of MTF, (2) the mean of MTF,
(3) the variance of MTF, (4) the number of peaky frequencies,
(5) weighted peaky frequencies and (6) the number of open
chops.

Fig. 7 Quantitative evaluations of cost functions proposed
in (McCloskey et al. 2012; Raskar et al. 2006) and the coded
factor for a local optimization applied to the Legendre se-
quences.

the initial binary sequence with one of the bits flipped.

We did this again to find the 2-partial flip group and the

3-partial flip group, which have 2 and 3 bit-flip combi-

nations, respectively. The cost function of each combi-

nation from these groups was then computed, in which

the combination with the maximum cost was supplied

as the seed for the next iteration until convergence.

In Fig. 7, we report the deblurring results using the

optimized binary sequences. The optimized sequences

from (McCloskey et al. 2012) and the coded factor ex-

hibit better performance than those of (Raskar et al.

2006). As an example, Fig. 8 and Table 1 show the

MTFs for a sequence length of 100 in Fig. 7 and the cor-

responding numerical analysis. The results imply that
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the minimum frequencies of the MTF criterion are in-

sufficient because they may amplify the variance of MTF.

The difference between (McCloskey et al. 2012) and the

coded factor is that the cost function of (McCloskey

et al. 2012) preserves a higher contrast in the low fre-

quency bands, because natural images have more power

in low frequencies, while the coded factor measures the

flatness of all spectral bands. Note that the binary se-

quence optimized from the coded factor shows a flat

spectrum with the lowest variance in all spectral bands.

We consider that the optimized sequences with the low-

est variance in all spectral bands to have positive im-

pact on better performance than that of (McCloskey

et al. 2012).

Next, we evaluated the improvement in performance

when the Legendre sequences were used as initial seeds

in the memetic algorithm in Fig. 9. As discussed in Sec. 5.1,

the performance improvement with respect to the coded

factor was marginal except for the short size sequences.

Fig. 10 shows comparisons of the deblurring results

using the matrix inversion and the image prior on a

synthetic dataset. For a more reliable evaluation, we ad-

ditionally performed a synthetic experiment using 100

Berkeley Segmentation Dataset images (Martin et al.

2001). One of the synthetic results is shown in Fig. 11.

Both the modified Legendre sequence and the memetic

algorithm consistently produced good binary sequences

for the coded exposure imaging, and the difference in

performance between the proposed method and the other

methods is amplified as the sequence length increases.

When the sequence length is big, the previous meth-

ods fail to find good sequences, due to the large search

space. As can be seen, the modified Legendre sequence

becomes a valuable approach when a trade-off between

computational time and the quality of sequences is con-

sidered, while the memetic algorithm is suitable for rel-

atively short lengths of sequences, when it can effec-

tively explore their search space in a reasonable com-

putational time. While the PSNR and the SSIM values

show small differences, the observed tendency remains

consistent.

This issue of sequence length is an important one,

since longer sequences are necessary for larger motion

blurs or faster moving objects (Agrawal and Raskar

2007; McCloskey 2010). The work in (Agrawal and Raskar

2007) specifically emphasized the need for finding good

long sequences.

6.2 Qualitative Evaluations

We implemented the coded exposure photography using

a PointGrey Flea3 camera, which supports the Trigger

Fig. 9 Quantitative evaluations on fluttering patterns gener-
ated by Memetic algorithm, Legendre sequence and memetic
algorithm that uses the Legendre sequences as initial se-
quences.

(a) (b) (c)

Fig. 12 We employ an off-the-shelf camera to capture coded
exposure imagery of high-speed motion. (a) indoor experi-
mental setup, (b) camera attached to a mobile robot, (c)
camera attached to a car.

mode 5 5hich enables a multiple pulse-width trigger with

a single readout (Fig. 12).When using Trigger mode 5,

the frame rate of the Flea 3 camera dips to 5 frames per

second. In our implementation, each shutter chop is 1

ms long, so a fluttering pattern 100 long has a capture

time of 100 ms.

For qualitative evaluations, we chose the proposed

methods that had the best performance for each se-

quence length in the quantitative evaluations (Fig. 10).

Fig. 13 and Fig. 14 show two examples of the de-

blurring results using the coded exposure with the flut-

tering patterns generated by the various methods. As

expected, the deblurring results using the proposed flut-

tering patterns return the sharpest images, enabling the

contents to be read, as opposed to the other results

where the contents remain difficult to interpret.

Fig. 15 and Fig. 16 show more examples of our coded

exposure imaging in action, by imaging static objects

from a fast moving camera (about 0.5 meter per sec-

ond). Similar to (Park et al. 2014), Fig. 15 shows the

deblurring results for an image of a poster on a wall

captured from a moving mobile robot. The deblurring

5 w
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Kodak Lossless True Color Image Suite
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Fig. 10 Comparison of the deblurring performance with synthetic dataset. For deblurring, (odd row) matrix Inversion and
(even row) hyper-Laplacian prior are used. For the quality metric, (left) PSNR and (right) SSIM used. The difference in the
performance amplifies as the sequence length increases; our method consistently generates good binary codes for the coded
exposure imaging. Although the hyper-Laplacian prior enhances the quality of the deblurred images, the proposed binary
sequences still show better performance than previous works.
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Matrix Inversion Matrix Inversion Matrix Inversion Matrix Inversion 

w/ Prior w/ Prior w/ Prior w/ Prior

(a) McCloskey et al. (b) Raskar et al. (Ns = 106) (c) Raskar et al. (Ns = 108) (d) Proposed

Fig. 11 One of the synthetic results with the fluttering patterns of length 50 generated by various methods. (1st row) blurred
images. (2nd row) deblurred images using the matrix inversion and (3rd row) the error maps. (4th row) deblurred images using
the hyper-Laplacian prior (Krishnan and Fergus 2009) and (5th row) the error maps.

(a) McCloskey et al. (b) Raskar et al. (Ns = 106) (c) Raskar et al. (Ns = 108) (d) Proposed

Fig. 13 Comparison of the deblurring performance with the fluttering patterns of length 120 generated by various methods.
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Matrix Inversion 

w/ Prior

Matrix Inversion 

w/ Prior

Matrix Inversion 

w/ Prior

Matrix Inversion 

w/ Prior

(a) McCloskey et al. (b) Raskar et al. (Ns = 106) (c) Raskar et al. (Ns = 108) (d) Proposed

Fig. 14 Comparison of the deblurring performance with the fluttering patterns of length 100 generated by various methods.
The blurred images are deblurred by using the matrix inversion method (2nd row) and the hyper-Laplacian prior (3rd row).

(a) McCloskey et al. (b) Raskar et al. (Ns = 106) (c) Raskar et al. (Ns = 108) (d) Proposed

Fig. 15 Comparison of the deblurring performance with the fluttering patterns of length 80 generated by various methods.

result using our pattern is sharper and clearer than

the other results. To verify the deblurring results, we

scanned the QR codes in the deblurred images using

a QR code scanner from a mobile phone, Google Gog-

gles. The scanner successfully recognized the code from

our results, while it failed to recognize the codes from

other results due to the remaining blur and noise. In

Fig. 16, we captured an outdoor scene from a moving

car. By using the fluttering patterns generated by our

method, the contents of the scene become legible after

deblurring, which otherwise would be very difficult to

read.

Next, we examined the visual quality of the motion

deblurring. We captured a sharp image and synthesized

blur kernels, using the fluttering patterns of the pro-

posed method, and others. We synthesized randomly

(a) Raskar Ns=106 (b) Proposed

Fig. 16 Our coded exposure imaging in action. Fluttering
patterns of length 60 are used.
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(a) McCloskey et al. (b) Raskar et al. (Ns = 106) (c) Raskar et al. (Ns = 108) (d) Proposed

Fig. 17 An example of motion deblurring with the fluttering patterns of length 70.

McCloskey et al.
Raskar et al. 
(𝑁𝑠 = 106)

Raskar et al.
(𝑁𝑠 = 108)

Proposed

McCloskey et al. Raskar et al. 
(𝑁𝑠 = 106)

Proposed
Raskar et al. 
(𝑁𝑠 = 108)

(a) Static (b) Blurred images (c) Bicubic upsampled image after deblurring

McCloskey et al. Raskar et al. 
(𝑁𝑠 = 106)

Raskar et al. 
(𝑁𝑠 = 108)

Proposed

(d) Resolution enhancement using (Agrawal and Raskar 2007)

Fig. 18 Comparison of the resolution enhancement (×2) performance. (a) Static image of a barcode. (b) Captured images
with different fluttering patterns of length 120. (c) Bicubic upsampled images by two after deblurring. (d) Resolution enhanced
images using motion blur. In (b, c), the results with the proposed sequence are clearer than results with the other sequences.

generated blur kernels using the fluttering patterns.

The blur kernels were estimated by using a blind decon-

volution algorithm (Shan et al. 2008). In Fig. 17, the

deblurred image captured from the proposed method

appears sharper and clearer than the results from the

other methods.

The work in (Agrawal and Raskar 2007) showed

that coded exposure imaging is not only effective for

motion deblurring but also for resolution enhancement.
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Fig. 19 Comparison of the deblurring performance with dif-
ferent sequence lengths under the same exposure. (a) se-
quence length = 40, 1 chop duration = 3 ms. (b) sequence
length = 120, 1 chop duration = 1 ms.

In their analysis, the optimal code length was approx-

imately k ∗ s for a given enhancement factor s and a

blur size k. Therefore, they emphasized the importance

of a long binary sequence, as mentioned previously. To

show its applicability, we implemented the resolution

enhancement method in (Agrawal and Raskar 2007).

Fig. 18 compares the performance using different binary

sequences of length 120, and as expected, the sequence

generated by our method provides better visual quality

in both deblurring and resolution enhancement.

In Fig. 19, we compared deblurring performance

using the same exposure times, but with different se-

quence lengths. Sequences of length 40 and 120 gener-

ated by the proposed method were used for this experi-

ment, and we controlled the single chop time so that the

exposure times were the same under different sequence

lengths. As shown in Fig. 19, the deblurred image with

the longer sequence preserves more spatial frequencies

of the blurred image than the shorter sequence.

7 Discussions

In this paper, we have presented new methods for com-

puting the fluttering sequence for coded exposure pho-

tography, by modifying the Legendre sequence and by

using the memetic algorithm. We have also proposed a

new cost function for generating the binary codes for

coded exposure imaging, called the coded factor.

We validated the efficiency of our algorithms through

various experiments, and were able to achieve better de-

blurring and resolution enhancement performance by

using the binary codes generated with our algorithms.

Through our experiment, we empirically confirmed that

coded exposure imaging has about a 4.5 dB perfor-

mance gain in terms of PSNR over conventional im-

age deblurring with a hyper-Laplacian prior, for images

PSNR : 20.1460 dB PSNR : 21.7034 dB

(a) w/o scene dependency (b) w/ scene dependency

Fig. 20 A comparison of deblurring results from Legendre
sequences optimized from flipping operation (a) without and
(b) with a scene dependent prior: (top row) deblurring im-
ages. (bottom row) error map.

captured under the same illumination condition and ex-

posure time.

There is still room for improvement, and one intu-

itive way to further enhance performance is to combine

the strengths of the proposed algorithms. Initializing

the memetic algorithm with a set of Legendre sequences

and random sequences is expected to achieve better re-

sults. This strategy will find optimal solutions while

maintaining performance at least comparable to that

of the Legendre sequences.

Another way would be to incorporate additional

knowledge in the imaging condition. In this work, we

have focused on the high-quality fluttering pattern gen-

erated at each length without considering any photo-

graphic conditions, such as the illumination or the ob-

jects velocity, etc. However, an optimal fluttering pat-

tern can only be generated when all the information in

a scene and camera are known in advance. For exam-

ple, a long sequence is beneficial for higher SNR in low

light in ideal conditions, but the actual performance

improvement will be unpredictable if the sensor depen-

dent parameters, such as quantum efficiency, the size of

pixels and camera readout noise, are not considered.

In addition, it was demonstrated in (McCloskey 2010)

that the open chop duration for optimal fluttering pat-

terns should depend on the objects velocity. Recent

coded exposure work in (Jeon et al. 2015) determined

that utilizing complementary sets of fluttering patterns

can alleviate the issue of object velocity. It was also

shown in (Agrawal and Raskar 2009) that optimal pat-

terns do not need to have an equal number of zeros and

ones if signal-dependent noise is taken into account. As

an important part of our future work, we plan to take
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those factors into consideration and implement addi-

tional hardware to solve those issues.

Another interesting direction for future work is to

develop scene dependent fluttering patterns. As an ex-

ample, we optimized a Legendre sequence with length

140 using the flipping operation with a scene dependent

prior, which imposed a flatness constraint in the mid-

dle spectral bands. As shown in Fig. 20, we were able to

improve the deblurring result using the spectral prior of

the scene. We also expect that our method can be uti-

lized for per-frame coded exposure imaging (Jeon et al.

2015) as an initial sequence set. Lastly, we would like

to explore applying the proposed algorithms to other

coded systems such as microscopy, coded aperture, pro-

grammable aperture, and image multiplexing (Ma et al.

2015; Zuo et al. 2016; Nagahara et al. 2010; Asif et al.

2015).
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Appendix

Appendix 1: Derivation of Eq. (7)

Let Û be a fluttering shutter pattern with the elements

ûi ∈ {0, 1}. We denote B as B = Û − µ with elements

bi ∈ {−µ, 1 − µ}, where µ is the mean value of the

elements in Û . Then we introduce U = 2(B + µ− 0.5),

where ui ∈ {−1, 1}. The difference between Û and U

is that the sequence values have changed from {0, 1} to

{−1, 1}.

Let âk be the autocovariance of Û and tk be the au-

tocorrelation of B, then âk = tk (Boufounos 2007). We

denote ak as the autocorrelation of U , which is derived

as follows.

ak =

n−k−1∑
i=0

uiui+k

= 4

n−k−1∑
i=0

(bi +m)(bi+u +m) (where m = µ− 0.5)

= 4

n−k−1∑
i=0

(bibi+k +mbi +mbi+k +m2)

= 4

n−k−1∑
i=0

bibi+k + 4

n−k−1∑
i=0

(m2 +mbi +mbi+k)

= 4

n−k−1∑
i=0

bibi+k + 4(

n−k−1∑
i=0

m2 +m

n−k−1∑
i=0

(bi + bi+k))

= 4tk + 4((n− k)m2 +m

n−k−1∑
i=0

(bi + bi+k))

= 4âk + 4m

n−k−1∑
i=0

(ûi + ûi+k + 3µ− 0.5)

(where

n−k−1∑
i=0

bibi+k = âk).

As mentioned in the original paper, m becomes 0 with

the assumption that the sequence is balanced with equal

number of zeros and ones for optimal autocorrelation

properties.
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Appendix 2: Example Sequences
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