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1. Identifiability under univariate sampling

In the main paper, we showed that parameters associ-

ated with the Cook-Torrance model can be identified from

noiseless univariate samples. We provide similar results

for other popular parametric BRDF models including the

Blinn-Phong model, and the Isotropic Ward model and is

extendable to the Ashikhmin-Shirley model.

Similar to the proof for the Cook-Torrance model, out-

lined in the main paper, the derivations underlying these re-

sults adhere to the following steps:

• First, we derive an expression for the BRDF purely as a

function of θh, and with θd = φd = 0. Note that isotropic

BRDFs are invariant to changes in φh.

• Second, since all models have a Lambertian diffuse term

and a specular term, we show that the parameters of the

Lambertian term can be identified by setting θh = π/2.

• Third, we show that the parameters defining the specu-

lar lobe can be identified by observing the BRDF at few

different values of θh.

Blinn-Phong model. BRDF measurements under the

Blinn-Phong model and univariate sampling (i.e., θd =
φd = 0) can be written as:

ρ(θh) = ρd + ρs
β + 2

2π
cosβ θh,

where ρd, ρs and β are the parameters defining the model.

Given ρd, we can write

log(ρ(θh)−ρd) = log ρs+log(β+2)−log(2π)+β log cos θh.

Hence, if we plot log(ρ(θh) − ρd) as a function log cos θh,

then the resulting plot is a straight line whose slope is β and

intercept is log ρs + log(β + 2) − log(2π). Hence, we can

recover all three parameters of the model.

In Figure 1, we show the estimated parameters via uni-

variate measurements and compare against the ground truth

Bling-Phong model.

Isotropic Ward model. BRDF measurements under the

Isotropic Ward model and univariate sampling (i.e., θd =
φd = 0) can be written as:

ρ(θh) = ρd +
ρs

cos θh

exp(− tan2 θh/β
2)

4πβ2
,

1
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Figure 1. Shown are the plots for the value of log(ρ(θd) − ρd)
for different value of log(cos(θh)) of two materials in MERL

database. We compare the results against the ground truth Bling-

Phong model. As can be seen here, the parameters can be deter-

mined from univariate measurements and very close to the ground

truth parameters.
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Figure 2. Shown are the plots for the value of log(ρ(θd) − ρd) +
log(cos θh) for different value of tan2 θh of two materials in

MERL database. We compare the results against the ground truth

isotropic Ward model. As can be seen here, the parameters can

be determined from univariate measurements and very close to the

ground truth parameters.

where ρd, ρs and β are the parameters defining the model.

First, we observe that ρd = ρ(π/2). Second, given ρd, we

can write

log(ρ(θh)− ρd) = log

(
ρs

4πβ2

)
− log(cos θh)− tan2 θh

β2
.

Equivalently,

log(ρ(θh)− ρd) + log(cos θh) = log

(
ρs

4πβ2

)
− tan2 θh

β2
.

If we plot the LHS expression as a function of tan2(θh),
then we expect a straight line whose slope is 1/β2 and in-

tercept is log ρs − log(4πβ2), from which we can identify

both β and ρs. More specifically, we can identify these pa-

rameters from values of ρ(θh) at two distinct values of θh.

In Figure 2, we show the estimated parameters via uni-

variate measurements and compare against the ground truth

Isotropic Ward model.

The proof for the Ashikhmin-Shirley model follows very

closely the one we described above for the Cook-Torrance

model.

2. Performance on MERL database
In this section, we empirically validate the performance

of our dictionary-based method for BRDF reconstruction

from univariate samples on the MERL database. We start by

analyzing its performance vis-a-vis the ground truth data,

and then compare our reconstructions against those from

other state-of-the-art BRDF modeling/sampling algorithms.
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Figure 3. We estimate the angular errors as well as the relative

BRDF errors for our proposed method on the MERL database.

The plots were obtained by averaging across all 100 BRDFs in the

MERL database and 100 randomly-generated normals per mate-

rial.

Varying number of input images. Figure 3 character-

izes the errors in surface normal as well as the BRDF esti-

mation for varying number of input images, or equivalently,

the number of samples for the half angles. For the normal

estimation, we report the average angular error for the uni-

variate sampling. The average angular error is computed by

randomly generating 100 normals per material and varying

across all 100 material BRDFs in the database. To char-

acterize the performance for BRDF estimation, we assume

the knowledge of true surface normal and report the aver-

age relative BRDF error for varying number of images. As

noted from Figure 3, both the angular errors and relative

BRDF errors degrade gracefully with a smaller number of

images.

BRDF estimation against ground truth. In this ex-

periment, we evaluate how accurately we can reconstruct

a BRDF given only univariate samples using a dictionary-

based prior. We assume a collocated setup, i.e. θd = 0◦,

set φh, φd = 0◦, and sample a chosen MERL BRDF at dif-

ferent values of θh to obtain the univariate measurements.

In Figure 4, we visualize the original BRDF (parameterized

by (θd, θh)) as well as 3 different 1-D slices correspond-

ing to θd = (0◦, 15◦, 30◦). We then reconstruct the BRDF

using a dictionary composed of the remaining 99 BRDFs

in the MERL database, using only the samples correspond-

ing to θd = 0◦. Figure 4 also visualizes the reconstructed

BRDFs, as well as 1-D slices of these reconstructions at

θd = (0◦, 15◦, 30◦). As can be seen here, in spite of esti-

mating the BRDF from only one slice of samples, the recon-

structed results closely match the ground truth BRDFs even



at other angles as indicated by the measured RMSE values.

Varying baseline between camera and flash. Smart-

phones and tablets have different relative positioning of

their cameras and flash units. Hence, it is important to char-

acterize the stability of our reflectance estimation technique

for varying baseline. When the object is at an approximately

fixed distance from the device, changes in baseline can be

modeled as changes in θd. Figure 5 showcases this by char-

acterizing BRDF estimation errors as a function of θd. For

each θd, we compute average error over 100 materials in

MERL database. Note that the performance remains sta-

ble for θd less than 65 degree; this is sufficient to capture

the operating scenario underlying a wide range of mobile

devices. Beyond 65 degrees, the univariate sampling com-

pletely misses the specular lobe which results in poor per-

formance in estimating the BRDF.

In addition, we ability of our method to handle a wide

range of materials, by rendering spheres lit by point lights

for different values of θd (see Figures 6 and 7). Renderings

with our reconstructed BRDFs closely match those pro-

duced using ground truth BRDF data, demonstrating that

our method is able to produce realistic results for a majority

of isotropic materials in the MERL database.
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Figure 5. We plot the approximation accuracy in terms of relative

BRDF errors by varying θd in degrees. For each θd, we compute

average error over 100 materials in MERL database.

Comparisons. In this section, we compare our BRDF es-

timation method against different ways to approximate raw

BRDF measurements – the bivariate model [5], Isotropic

Ward, Cook-Torrance, as well as different sampling strate-

gies – full isotropic sampling [1], bivariate sampling, and

optimal sampling [6]. We follow the method of [3] to fit

the parameters of the Cook-Torrance and Ward models to

the full raw BRDF measurements. To compare against

different sampling strategies, we use the same dictionary-

based method to reconstruct BRDFs from different sets of

BRDF samples. For Hui et al. [1], we randomly sample the

full isotropic BRDF space for 100 samples of lighting/view

pairs. We also sample the bivariate BRDF space spanned

by θh and θd with the same number of lighting/view com-

binations. To compare against Xu et al. [6], we sample the

BRDF with 20 entries as indicated in their paper. Finally,

we collect 100 univariate BRDF samples with collocated

lighting and view directions for our method.

For evaluation, we isolate the testing material while leav-

ing the remaining 99 materials in the dictionary. The visu-

alization of the materials in MERL database for all these

methods are shown in Figures 8 and 9, where we observe

once again that univariate sampling is quite competitive to

state-of-the-art models.

3. Performance on synthetic data
We evaluate our technique on synthetic data rendered

using the Mitsuba physically-based renderer [2]. We sim-

ulate the same optical setup as our real capture prototype.

In particular, we specify a perspective camera and a point

light source collocated at the camera. We apply an arbi-

trary spatially-varying BRDF to a near-planar surface with

a bump map. We also place checkerboard patterns in the

corners of this sample, as is done in our real experiments.

We render this scene under different viewpoints (and corre-

sponding light directions) and create a set of 65 input im-

ages. Some example images from this dataset are shown in

Figure 10.

We process this data using our reflectance and shape es-

timation method. The checkerboards are used to calibrate

the camera and lights. Finally we use our dictionary-based

method to estimate surface normals and BRDFs. We eval-

uate the accuracy of these estimates as well as compare

novel renderings of our reconstructions to ground truth pho-

tographs.

Normal estimation. Figure 11 demonstrates how our

surface normal estimates evolve over the course of 10 iter-

ations (starting from a flat surface at the 0-th iteration). As

can be seen here, the average angular error successively re-

duces and we get highly accurate normal estimates even for

complex spatially-varying materials. Figure 12 compares

our reconstructions against those from the method of Riv-

iere et al. [4] on this synthetic data. For both the methods,

we show the estimated surface normals as well as the inte-

grated depth map against the ground truth depth. As demon-

strated in Figure 12, our technique recovers more accurate

gross shape as well as more fine scale structures than [4].

Reflectance estimation. In Figure 13, we characterize

our reflectance and shape estimation on the synthetic data,

by comparing renderings of our normal/BRDF estimates

under two novel lighting and view directions against ground

truth renderings. While our estimation is done on images



aluminium Mean RMSE: 0.12

chrome Mean RMSE: 0.24

gold-paint
Mean RMSE: 0.36

green-fabric Mean RMSE: 0.41

alum-bronze Mean RMSE: 0.15

Figure 4. Evaluation on the MERL database. On the left, we visualize ground truth MERL BRDFs on the 2-D plane parameterized by

(θd, θh) (for φd = 0◦), as well as 3 1-D slices corresponding to θd = (0◦, 15◦, 30◦). We reconstruct the BRDF using only the collocated

univariate samples, i.e., θd = 0◦, and visualize it on the right. As can be seen here, by using the univariate measurements only, we can

reconstruct the BRDF at other θd quite accurately, as indicated by the mean RMSE shown in the top-left of each plot. We normalize the

BRDF ρ by ρ̂ = ρ−min(ρ)
max(ρ)−min(ρ)

and plot the curve with different θd.

captured with a collocated setup, we are evaluating these

renderings on non-collocated view/light pairs. This allows

us to test how accurate our method is at reproducing the ap-

pearance of samples it has not seen. As can seen from this

figure, our results closely resemble images rendered with

the ground truth normals and BRDFs, indicating the robust-

ness and accuracy of our method.
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Figure 6. Evaluation on the MERL database. We visualize the ground truth MERL BRDF data and our univariate sample-based reconstruc-

tion by rendering these BRDFs on spheres lit by point light sources for different values of θd. Our rendered materials are visually almost

identical to the ground truth BRDFs, indicating the accuracy of our reconstrucion.
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Figure 7. Evaluation on the MERL database. We visualize the ground truth MERL BRDF data and our univariate sample-based reconstruc-

tion by rendering these BRDFs on spheres lit by point light sources for different values of θd. Our rendered materials are visually almost

identical to the ground truth BRDFs, indicating the accuracy of our reconstrucion.
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Figure 8. We compare the visual performance for the state-of-the-art BRDF estimation methods for materials in MERL database.
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Figure 9. We compare the visual performance for the state-of-the-art BRDF estimation methods for materials in MERL database.



Figure 10. Example images from our synthetic dataset.

4. Performance on real data
We evaluate our method on real data captured using a

hardware prototype consisting of a PointGrey Grasshopper

3 with a light pipe. Our prototype acquisition hardware con-

sists of a PointGrey Grasshopper 3 GS3-U3-23S6C-C cam-

era and a light pipe. During image capture, we keep the

camera and light source fixed and move the target sample, as

shown in Figure 14. Figure 15 showcases our results – ge-

ometry, reflectance, as well as images rendered under novel

lights – on datasets captured using the prototype. These

six real world datasets have 113, 136, 105, 160, 92 and

110 input images, respectively. As shown here, images ren-

dered using our estimated normals and BRDFs under novel

lights closely resemble actual captured photographs, indi-

cating the robustness and accuracy of our method.

Light pipe

C
A

B

Optical lens
8-mm f/2.2

Point Grey 
GRASSHOPER 3Light pipe

Figure 14. Our hardware prototype and example captured images.

Comparisons between PTGrey Grasshopper and iPhone
6s. Figure 16 compares the performance of the shape esti-

mates by using PointGrey prototype. Our prototype acquisi-

tion hardware consists of a PointGrey Grasshopper 3 GS3-

U3-23S6C-C camera and a light pipe. During image cap-

ture, we keep the camera and light source fixed and move

the target sample, as shown in Figure 14.

The PointGrey Grasshopper camera has a pixel pitch of

6.45μm which allows us to collect high-quality images. For

shiny objects with sharp specular lobes, we also collect

HDR images for improved performance. In contrast, the

iPhone 6s has a much smaller pixel pitch (1.22μm) and the

app that we used to collect the dataset did not allow for HDR

acquisition or changing the brightness of the flash. Hence,

it is expected that we see a drop in performance when using

the iPhone 6s to capture shape and reflectance. Surprisingly,

this difference is minimal as seen in the quality of results in

Figure 16

Material trait analysis. Figure 17 demonstrates material

trait analysis using our method on a dataset captured with

both our PointGrey prototype and iPhone 6s. This is similar

in spirit to the results in the main paper.

References
[1] Z. Hui and A. C. Sankaranarayanan. A dictionary-based ap-

proach for estimating shape and spatially-varying reflectance.

In ICCP, 2015. 3

[2] W. Jakob. Mitsuba renderer, 2010. URL: http://www. mitsuba-
renderer. org, 3:10, 2015. 3

[3] A. Ngan, F. Durand, and W. Matusik. Experimental analysis

of brdf models. Rendering Techniques, 2005(16th):2, 2005. 3

[4] J. Riviere, P. Peers, and A. Ghosh. Mobile surface reflectom-

etry. In Computer Graphics Forum, 2016. 1, 3, 11

[5] F. Romeiro, Y. Vasilyev, and T. Zickler. Passive reflectometry.

In ECCV, 2008. 3

[6] Z. Xu, J. B. Nielsen, J. Yu, H. W. Jensen, and R. Ramamoor-

thi. Minimal brdf sampling for two-shot near-field reflectance

acquisition. TOG, 2016. 3



Sample input 1 iteration: 1.27◦ 5 iterations: 1.27◦ 10 iterations: 0.71◦ Ground truth

Sample input 1 iteration: 0.73◦ 5 iterations:0.27◦ 10 iterations: 0.22◦ Ground truth

Sample input 1 iteration: 1.88◦ 5 iterations: 1.20◦ 10 iterations: 1.14◦ Ground truth

Sample input 1 iteration: 1.73◦ 5 iterations: 0.94◦ 10 iterations: 0.88◦ Ground truth

Sample input 1 iteration: 0.77◦ 5 iterations: 0.59◦ 10 iterations: 0.57◦ Ground truth

Figure 11. We illustrate how our surface normal estimates evolve for a number of scenes with different geometry and materials. Starting

from flat surfaces, our method refines the normals so that over the course of 10 iterations they converge to results that have a mean angular

error of only 0.73◦ to 1.14◦.



angular error 2.03◦ 0.71◦

angular error 1.08◦ 0.22◦

angular error 3.29◦ 1.14◦

angular error 2.86◦ 0.88◦

angular error 1.92◦ 0.57◦

Sample input Riviere et al. [4] Our results Ground truth

Figure 12. We compare our surface normal estimates against those from Riviere et al. [4] on our synthetic dataset. Shown are (left-right)

one sample image, estimated normals and recovered 3D shape via Poisson reconstruction using Riviere et al., our method, and the ground

truth. Please note that our reconstructions, like the actual samples, are close to planar and contain more fine-scale detail. In addition our

average angular error is significantly lower than theirs.



Sample input Rendering with Ground truth Rendering with Ground truth

estimated normals/BRDF rendering estimated normals/BRDF rendering

Figure 13. We visualize our estimated reflectance and normals under two novel view and lighting conditions. We also compare them

against ground truth renderings under the same conditions. Our results closely match the ground truth images, demonstrating that while

our method only observed collocated measurements, it generalizes well to novel views/lights.



(a) Input sample (b) Estimated normals (c) Recovered surface (d) Rendering (e) Photograph

Figure 15. We demonstrate shape and reflectance estimation on images captured using an iPhone 6S (a). We show the estimated normal

map in false color (b) and depthmaps (c). We also compare rendered (d) results against actual captured photographs under novel lighting

(e).



PointGrey results iPhone 6s results

PointGrey results iPhone 6s results

Figure 16. We demonstrate the performance of shape estimation by using both pointGrey and iPhone 6s. As can be seen here, we can

achieve nearly the same quality by using either PointGrey or iPhone 6s, indicating the robustness of our technique.
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Figure 17. Material trait analysis on real capture data. (top) For two regions indicated by p1 and p2, we plot the associated material trait

values according to Section 5 in the main paper. Pixels (p1) with metallic properties have large values in metallic paint and metal while

pixels (p2) with diffuse Lambertian-like materials show large values in diffuse paint and fabric. (bottom) We visualize per-pixel material

trait values for three material groups — metallic paint+metal, diffuse paint+fabric, and plastic+acrylic. This leads to clean, consistent

material segmentations.


