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Robust Upright Adjustment of 360 Spherical Panoramas

Jinwoong Jung · Beomseok Kim · Joon-Young Lee · Byungmoon Kim ·
Seungyong Lee

Abstract With the recent advent of 360 cameras, sphe-

rical panorama images are becoming more popular and

widely available. In a spherical panorama, alignment of

the scene orientation to the image axes is important for

providing comfortable and pleasant viewing experiences

using VR headsets and traditional displays. This paper

presents an automatic method for upright adjustment

of 360 spherical panorama images without any prior in-

formation, such as depths and Gyro sensor data. We

take the Atlanta world assumption and use the hor-

izontal and vertical lines in the scene to formulate a

cost function for upright adjustment. In addition to

fast optimization of the cost function, our method in-

cludes outlier handling to improve the robustness and

accuracy of upright adjustment. Our method produces

visually pleasing results for a variety of real-world sphe-

rical panoramas in less than a second and the accuracy

is verified using ground-truth data.

Keywords spherical panorama · upright adjustment ·
camera calibration

1 Introduction

Spherical panoramas (360 panoramas) are images with

360 degrees of horizontal and 180 degrees of vertical

field of views. In the past, 360 panoramas used to be

niche, typically created by skilled professionals: first

carefully taking a set of images and then stitching them
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using special software or service. Recently, this has been

changing as mobile panorama applications have been

released, and the use of 360 panoramas is accelerated

as new 360 cameras become available. Moreover, as vir-

tual reality (VR) headsets are getting popular and VR

medias appear to be strong among VR applications,

360 camera development is further accelerated in both

low-cost and high-end flavors from large camera makers

and start-up companies.

360 panoramas can be seen in traditional monitors

or mobile displays with special software that allows a

user to change the viewing direction. 360 panoramas

can also be viewed with a VR headset that allows a

user to look at any direction by simply turning the head.

With a VR headset, a user typically feels presence inside

the scene where the panorama image was taken, even

when the panorama is a single mono image, similarly

to when we close one eye, we do not lose much of depth

perception in typical scenes. Such presence at the scene

is a new photography experience to most users, and

therefore, delivering high-quality VR experience is an

important part of 360 panorama imaging.

In typical 360 panorama images taken with a low-

cost camera, e.g., Ricoh Theta S ($350), wavy horizons

and slanted objects due to slight camera tilts and rolls

are common, as shown in Figure 1. By design, 360 cam-

eras do not provide stable grips or viewfinders while

users often take lots of photos with hand-held cameras.

VR experience of such mis-oriented panorama images

would be unpleasant: users may feel like falling down or

leaning toward the ground in the scene (Figure 2). The

correction of this mis-orientation will greatly improve

the experience as the user now feels standing straight

in the scene. This kind of correction is called upright

adjustment [10].
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Fig. 1 Our method automatically uprights a single 360 spherical panorama image (left) by aligning the perceived upward
direction of the scene to the vertical axis of the panorama image, producing the result image (right) that is much more pleasant
to look at. To achieve this, we detect lines, find great circles, analyze vanishing points, and finally solve for optimal 3D rotation.

Fig. 2 A spherical panorama viewed with a VR headset
could be unpleasant if it is tilted (left). Users may feel like
falling down or leaning toward the ground. If this tilt is cor-
rected, the user would feel standing straight (right), greatly
improving the viewing experience.

With upright adjustment, monitor or mobile display

viewing experiences can also be improved for spherical

panoramas. Grasping of the scene in the whole pano-

rama view mode benefits from a straight horizon with

minimal distortions and non-slanted objects near the

horizon. In the narrow field of view mode, when a user

scrolls the view horizontally to the left or right, the hori-

zon stays around the middle line of the image, rather

than continuously fluctuating up and down.

In this paper, we present an automatic method for

upright adjustment of 360 spherical panorama images.

We take the Atlanta world assumption [12] for the scene,

and find horizontal and vertical great circles that repre-

sent the input spherical panorama. We formulate a cost

function for upright adjustment by imposing the de-

sired properties on the great circles from vertical lines

and the vanishing points from horizontal lines. Then,

we compute the optimal rotation to resolve the mis-

orientation of the camera by minimizing the cost func-

tion, where a rotation is represented as an update of the

north pole position of the sphere. To make our method

more robust and accurate, we also present effective out-

lier handling methods for removing misclassification of

a horizontal line as a vertical one, as well as reducing

the influences of less-accurate great circles. Various ex-

perimental results show that our method successfully

achieves upright adjustment of spherical panoramas in

a fast, accurate, and robust way.

The main contributions of our work are summarized

as follows:

– Analysis of the upright adjustment problem of sphe-

rical panoramas, providing a simple but effective

formulation with a cost function

– Fast method for optimizing the cost function to find

an optimal rotation that resolves the mis-orientation

of the camera

– Effective outlier handling methods to improve the

robustness and accuracy of upright adjustment.

2 Related Work

Images captured by casual users often appear to be dis-

torted due to the tilt and roll of a camera, and the

distortions degrade the visual quality of images. To im-

prove the perceptual quality of such images, Gallagher

[4] proposed one of the pioneering work that automat-

ically corrects camera tilt in an image. This method

estimates the vertical vanishing point of an image and

adjusts the rotation by placing the vanishing point on

the y-axis. Recently Lee et al. [10] introduced a set

of criteria for upright adjustment of photographs and

proposed an optimization framework that estimates a

homography to satisfy the criteria. To reduce warping

distortion and avoid cropping due to a rigid transforma-

tion during upright adjustment, He et al. [6] presented

an optimization-based warping method that enables the

rotation of horizontal and vertical lines without crop-

ping. Image editing tools, such as Adobe Photoshop,

also provide not only an automatic upright tool but

also manual adjustment tools like 3D image plane rota-

tion to correct distortions and transform the perspec-

tive in an image. With these techniques and tools, we

can obtain visually pleasing upright adjustment results

for most of the conventional camera images.

However, applying the upright adjustment method [10]

for ordinary images to 360 panoramas is cumbersome
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and would not be the best. It may require first taking

a perspective crop from the input panorama and then

computing the homography that uprights the crop, fol-

lowed by figuring out the rotation matrix correspond-

ing to the homography. With this approach, the up-

right adjustment result would depend on the crop, and

finding the best crop is not a simple problem. Further-

more, there is no reason to crop and give up informa-

tion available in every view direction in a 360 pano-

rama. Our method directly handles upright adjustment

of 360 panoramas, taking advantage of all information

in the input for robust and accurate results.

There have been studies that focus on enhancing

the visual quality of wide angle views. Cylindrical and

spherical projections are typically used to show 360 pa-

norama images on a flat 2D display surface, but they

introduce distortions like curving straight lines. To re-

duce the distortions, Kopf et al. [9] presented locally-

adapted projections, where the user specifies regions

where a perspective-like projection is desired, and then

a mapping is computed to minimize distortions while

being planar in the specified regions. Instead of cylin-

drical projection, Wang et al. [14] proposed a new rep-

resentation method for panoramas using cube unwrap-

ping. This method estimates vanishing points to rectify

the orientation and reproduces the final cube unwrap-

ping with aesthetic and information-preserving criteria.

For fisheye images, Wang et al. [13] introduced an ad-

justment technique to correct the rotation angle of a

camera and complete the missing parts. However, these

methods adjust images to display wide-angle views on

a flat 2D surface while our method provides upright

adjustment for displaying on a VR headset.

The analysis on 360 panorama images has been ac-

tively studied in the field of robot vision using omni-

directional cameras [11,7,2,3]. In particular, Bazin et

al. [2] considered vanishing point extraction and rota-

tion estimation from omnidirectional images, and Ka-

mali et al. [7] presented stabilization results from omni-

directional videos. Recently, Kopf et al. [8] solved om-

nidirectional stabilization using a deformable rotation

motion model from feature trajectories.

On the other hand, there has been little attention

on an automatic upright adjustment of 360 panoramas.

Bazin et al. [2] applied vanishing point extraction and

rotation estimation to omnidirectional video stabiliza-

tion, and their method has an initialization step for ori-

enting the first frame, which is the most closely related

work to ours. The method achieves upright results by

aligning the vertical vanishing points with the upward

direction, so it works reasonably well if accurate vertical

vanishing points can be extracted. However, this simple

Fig. 3 Horizontal and vertical lines and their vanishing
points. We can obtain the red circles by projecting vertical
lines, and the intersections of the circles are north and south
poles. Following our Atlanta world assumption, there can be
multiple horizontal vanishing points along the equator. We
express the vanishing points from horizontal lines as green
dots.

solution easily fails when images contain noisy edges or

violate the Manhattan world assumption (Figure 8).

3 Formulation

For upright adjustment of an input 360 spherical pa-

norama image, we need to find a rotation that resolves

the mis-orientation of the camera. Once the rotation

has been computed, the adjusted image can be easily

obtained by resampling the input image. This differs

from the upright adjustment of an ordinary perspective

image [10] which introduces distortions and cropping

of image boundary due to a homography-based image

transformation. In the case of a spherical panorama, an

upright adjustment is achieved by rotating an axis in

the spherical coordinate, therefore there is no cropping

and content loss.

The rotation needed for upright adjustment of a

spherical panorama has 2 DOF, i.e., tilt and roll, as

pan is not related to the undesirable inclination of the

camera. A tilt can resolve the difference between the

physical and perceived horizons (eye levels) when a user

watches a spherical panorama using a VR headset. Sim-

ilarly, a roll can handle the mismatch of the physical

and perceived straight-up directions. In contrast, a pan

simply changes the initial forward direction for viewing

with a VR headset and does not affect the perception

of horizons and object orientations. We represent our

desired 2 DOF rotation as the update of the north pole

position on the sphere, where the position is specified

by a unit vector. Consequently, our problem is reduced

to finding a unit vector
−→
P for the updated north pole,

whose original position is
−→
P 0 = −→y = (0, 1, 0).

A spherical panorama image usually has no depth

information. As a scene prior for structure analysis, we

take the Atlanta world assumption [12], where there is

one shared vertical direction in the objects and several
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(a) (b)

(c) (d)

Fig. 4 Overall process. (a) input image. (b) lines detected and classified: red for vertical lines, and yellow for horizontal lines.
(c) great circles from the classified lines. Green dots are vanishing points computed from horizontal (yellow) lines. (d) upright
adjustment result.

dominant horizontal directions that are orthogonal to

the vertical direction. This assumption works well for

most indoor and outdoor scenes with man-made ob-

jects.

Now consider horizontal and vertical lines in the

scene. A horizontal line is parallel to the ground plane,

and a vertical line is in the straight-up direction perpen-

dicular to the ground. When a 3D line is projected onto

a spherical panorama, it is mapped onto a great circle

of the sphere whose center is the camera position. In the

ideal case with no tilt and roll of the camera, a great
circle corresponding to a vertical line always passes the

north pole. In other words, the north pole is a vanishing

point of the vertical lines. For horizontal lines, a set of

parallel lines forms two vanishing points. That is, the

great circles corresponding to the parallel lines meet at

two antipoles on the sphere (Figure 3). The vanishing

points change with the orientations of parallel lines, but

they always lie on the equator of the sphere in the ideal

case with no tilt and roll.

For a 3D vertical line l, we represent the correspond-

ing great circle on the unit sphere as a unit vector −→v .

We first sample two points, p1 and p2, on the line and

project the points onto the sphere, obtaining p′1 and

p′2. Let c be the center of the sphere. Then, the cross-

product of two vectors from c to p′1 and p′2 gives a unit

vector −→v = (p′1 − c)× (p′2 − c), which is perpendicular

to the great circle. In addition, the vanishing point of a

set of parallel horizontal lines is a point on the sphere

and can be represented as a unit vector
−→
h . Recall that

both unit vectors −→v and
−→
h should be perpendicular to

the north pole vector
−→
P if there is no tilt and roll of

the camera.

Finally, we formulate the cost function for upright

adjustment of a spherical panorama as follows.

E(
−→
P ) = α

∑
i

(−→vi ·
−→
P )2+β

∑
j

(
−→
hj ·
−→
P )2+λ(1−−→y ·

−→
P )2,

(1)

where −→vi is the great circle of a vertical line li, and
−→
hj

is the vanishing point in a horizontal direction paral-

lel to the ground. The last term is for regularization

to prevent a drastic change of the north pole from the

original position (y-axis). It can effectively prevent un-

necessarily large rotations when line detection has failed

and produced an erroneous set of lines. α, β, and λ are

user-specified relative weights of the terms. We estimate

the updated position of the north pole by finding a unit

vector
−→
P that minimizes Eq. (1). Then, we achieve up-

right adjustment which resolves the tilt and roll of the

camera by aligning the north pole to
−→
P .

4 Algorithm

Image representation Our 360 spherical panorama im-

age is represented as a 2D rectangular array of pixels.

A pixel in an image contains the color value of the view

direction (φ, θ), where 0 ≤ φ < 2π and −π2 ≤ θ ≤ π
2 .

Figures 1 and 3 show examples. For notational conve-

nience, we use x and y, instead of φ and θ, to represent
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the longitude and latitude of the sphere. We assume

the input image is equipped with no depth information

(Figure 4(a)).

Line segment (arc) detection To find great circles cor-

responding to 3D lines in the scene, we first detect

line segments from the input spherical panorama image.

However, a 3D line segment in the scene is mapped onto

an arc in a spherical panorama image, and it would not

be effective to directly apply a line detection algorithm

to the input panorama image. Thus, we first resample

the spherical panorama image onto the cubemap and

apply LSD algorithm [5] to the cubemap images, al-

though any line detection algorithm (e.g. EDLines [1])

can also be used. Each cube face is grayscale image of

the size 256× 256 regardless of input image resolution.

The detected line segments on the cubemap are con-

verted to arcs on the spherical panorama. The top and

bottom images of the cubemap would have little infor-

mation for upright adjustment, and we use only four

side images for line detection, where the vertical FOV

of each side image is increased to 2
3π from the ordinary

π
2 in order to cover more areas. In this paper, for con-

venience, we use a line segment and an arc interchange-

ably to represent the projection of a 3D line segment in

the scene onto the spherical panorama image.

In a given spherical panorama captured with a mis-

oriented camera, 2D line segments mapped from 3D

vertical and horizontal lines would appear slanted re-

flecting the camera orientation. We define the slanted

angle of a 2D line segment as the angle from the x-

axis of the image. If the slanted angle of a detected line

segment is less than γ1, it is classified as horizontal. If

the angle is between γ1 and γ2, the line segment is dis-

carded. If the angle is greater than γ2, the line segment

is classified as vertical. We use γ1 = π
6 and γ2 = π

3 for

all examples in our experiments. Figure 4(b) shows the

detected horizontal and vertical line segments.

Great circle detection To recover the great circles of the

corresponding 3D lines in the scene, we apply spherical

Hough transform to the detected horizontal and verti-

cal line segments. For a line segment, the two endpoints

are points on the sphere and determine a great circle,

which can be represented by a unit vector, as described

in Section 3. We quantize the unit hemisphere into the

resolution of m × n and accumulate the unit vectors

of the great circles produced by horizontal and vertical

line segments, where the lengths (a.k.a. spatial degree)

of line segments are used for the weights of the accu-

mulation. In our implementation, we use m = 360 and

n = 90. After accumulating all line segments, we select

top t1% horizontal and top t2% vertical great circles us-

ing the accumulated weights, where the maximum num-

bers of the selected great circles are limited by k1 and

k2, respectively. We use t1 = t2 = 10 and k1 = k2 = 50.

Figure 4(c) visualizes the detected great circles overlaid

on the input image.

Vanishing point detection Using the great circles recov-

ered from horizontal line segments, we find vanishing

points
−→
hj used for Eq. (1). We again quantize the unit

hemisphere into the resolution of m × n, and raster-

ize the great circles to find intersections. The weight

of a great circle accumulated in the spherical Hough

transform is added to the quantized cells in the ras-

terization process. We finally choose top t3% non-zero

cells containing the largest weights to determine van-

ishing points from parallel horizontal lines, where k3 is

the maximum allowed number of chosen cells. We use

t3 = 10 and k3 = 30. In Figure 4(c), the intersections

of great circles from horizontal lines show the detected

vanishing points.

Optimization Although it is quadric in terms of
−→
P , op-

timization of Eq. (1) could be complicated due to the

unit vector constraint on
−→
P . We can find a geomet-

ric solution that optimizes Eq. (1) on the surface of

the unit sphere. That is, each term in Eq. (1) gives

a great circle constraint on the target position of
−→
P .

Then, we can compute the intersections of the great

circles from the terms in Eq. (1) and take the weighted

average of the intersection points, e.g., using quaternion

arithmetic. However, we found that in most cases sim-

ply computing the least-square solution of Eq. (1) and

then normalizing the solution would provide accurate

enough optimization results for
−→
P . Figure 4(d) shows

the upright adjustment result obtained by optimizing−→
P with this simple approach.

5 Outlier Handling

Misclassified 3D horizontal line removal In Section 4,

we use simple thresholding to determine horizontal and

vertical line segments. If the slanted angle of a line seg-

ment, at the cubemap, detected from the input spheri-

cal panorama is greater than γ2, it is classified as ver-

tical. However, this thresholding could include outliers,

where a line segment corresponding to a 3D horizon-

tal line in the scene is misclassified as vertical. This

case happens when a 3D horizontal line is oriented to-

ward the view direction in the scene, having rapid depth

changes from the viewpoint. Then parts of the projec-

tion of the 3D line, around the vanishing points, could
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(a) Input image (b) The result without removing the outliers

(c) Visualization of great circles (d) The result with outliers removal

Fig. 5 Outlier handling for misclassified horizontal lines. (a) input image. Red line segments are outliers, i.e., sampled from
3D horizontal lines but classified as vertical by our thresholding. (b) result without removing the outliers from vertical lines.
(c) visualization of great circles: red for vertical lines, yellow for horizontal lines, and blues for outliers (vertical lines that pass
vanishing points depicted as green dots). (d) result with outliers removed, i.e., only with red and yellow lines.

Fig. 6 Iterating the upright adjustment improves the result quality. (left) the input image, (middle) after the first iteration,
(right) after the second iteration. We apply the iteration about three times, and each iteration takes about 45 milliseconds.

appear almost vertical in the cubemap image (also in

panorama image) (Figure 5(a)). This misclassification

can incur a wrong result of the upright adjustment, as

shown in Figure 5(b). Note that this misclassification of

3D horizontal lines is the only case of outliers that could

happen with our thresholding. A 3D vertical line in the

scene may not be classified as horizontal in the pano-

rama image unless a drastic roll has been intentionally

applied to the camera.

To handle this misclassification, we use vanishing

points of horizontal lines. If the great circle of a line seg-

ment l passes through the vanishing point determined

from a set of horizontal lines, line l should be parallel

to the line set. Base on this property, we check each

line segment classified as vertical by our thresholding

to check whether its great circle intersects any of van-

ishing points computed from horizontal line segments.

If the great circle has an intersection, we discard the

line segment in the optimization process. Recall that we

have already computed the vanishing points of horizon-

tal line segments for Eq. (1), thus this outlier removal

can be done with negligible computational overhead.

Figure 5(c) visualizes the outliers to be removed, and

Figure 5(d) shows that we achieve correct upright ad-

justment with our outlier removal.

Adaptive weight normalization Due to the 3D lines which

are not parallel (perpendicular) to the ground plane but

classified horizontal (vertical) line, some of the detected

line segments and consequently some of the recovered

great circles could be less accurate than others. To re-

duce the influences of these less accurate great circles in

the optimization process, we revise Eq. (1) as follows:

E(
−→
P ) = α

∑
i

ωvi (−→vi ·
−→
P )2 + β

∑
j

ωhj (
−→
hj ·
−→
P )2,

s.t. ωvi = e−(
−→vi ·
−−→
Pold)

2/2σ2
v , ωhj = e−(

−→
hj ·
−−→
Pold)

2/2σ2
h ,

σ2
v =

1

nv

∑
i

(−→vi ·
−−→
Pold)

2, σ2
h =

1

nh

∑
j

(
−→
hj ·
−−→
Pold)

2, (2)

where ωvi and ωhj are weights for vertical great cir-

cles −→vi and horizontal vanishing points
−→
hj respectively,
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and
−−→
Pold is the current north pole. In principle, upright

should be a slight adjustment for correcting the camera

orientation, and need not drastically change the user’s

original intention of camera angles. We reflect this prin-

ciple on the weights by giving a high weight ωvi to a

vertical great circle passing nearby the current north

pole, i.e., −→vi ·
−−→
Pold ' 0. Similarly, a high weight ωhj is

assigned to a horizontal vanishing point
−→
hj around the

equator of the sphere. Weights ωvi are normalized by the

variance σ2
v , which measures the average divergence of

vertical great circles from the current north pole. ωhj are

similarly normalized by σ2
h, which is the average diver-

gence of horizontal vanishing points from the equator.

nv and nh are the numbers of detected vertical great

circles and horizontal vanishing points, respectively.

With Eq. (2), we iteratively update the north pole
−→
P using the result of the previous iteration as

−−→
Pold,

where
−−→
Pold = −→y at the beginning. If the current north

pole
−−→
Pold is not correct, e.g., in the first iteration of

a mis-oriented input spherical panorama, many of ver-

tical great circles −→vi are diverged from
−−→
Pold, and the

variance σ2
v becomes large. Then, the relative differ-

ences among the weights ωvi are reduced so that vertical

great circles −→vi have similar influences on the optimiza-

tion using Eq. (2). Consequently,
−→
P is determined by

the majority of vertical great circles. On the other hand,

when
−−→
Pold is almost correct, many vertical great circles

pass nearby
−−→
Pold, and σ2

v is small. In that case, vertical

great circles −→vi almost passing through
−−→
Pold would have

relatively higher weights ωvi than other less-accurate or

outlier vertical great circles. A similar argument holds

for horizontal vanishing points
−→
hj and their weights ωhj .

With this adaptive weight normalization, our iterative

computation of
−→
P can quickly converge to an accurate

solution. Note that the regularization term in Eq. (1)

has been omitted in Eq. (2) as the weight computation

using
−−→
Pold provides similar regularization.

Iterative adjustments After we have resampled a cube-

map from an input spherical panorama image using

the rotation computed for upright adjustment, verti-

cal/horizontal line segments would be classified more

correctly. Thus, to obtain a more accurate upright ad-

justment result, we repeat the optimization process us-

ing Eq. (2), where the output of the current iteration

becomes the input of the next iteration. As the iteration

goes, the great circles from vertical/horizontal line seg-

ments become more accurate, and the north pole can

be determined more accurately by minimizing Eq. (2),

as shown in Figure 6. In our experiments, we set the

maximum iteration as 10 times, but our optimization

usually converges within four iterations.

Algorithm 1 Upright of spherical panorama
1: procedure EstimateRotationMatrix
2: I ← Input image
3: R← Identity matrix
4: repeat
5: C ← ResampleCubemapWithRotation(I, R)
6: [V,H]← FindGreatCircle&V anishingPoint(C)

7:
−→
P ← (0, 1, 0)

8: repeat

9:
−→
P ← FindPole(

−→
P , V,H) . Eq. (2)

10: until
−→
P has not been updated anymore

11: R←MakeRotationMatrix(
−→
P )

12: until R has not been updated anymore
13: return R

Algorithm 1 summarizes the overall process of our

upright adjustment method for spherical panorama im-

ages. We first resample a cubemap from an input image.

We then find vertical great circles and horizontal van-

ishing points using the methods described in Section 4

with our outlier handling which remove mis-classified

3D horizontal lines. Finally, we iteratively update the

north pole
−→
P using Eq. (2), and compute the rotation

matrix R from the converged
−→
P . The whole process is

repeated until R does not change anymore.

6 Results

Parameters and computation time Our method has pa-

rameters, α, β, and γ in Eq. (1) and Eq. (2). We em-

pirically validated that adjustment results are not sen-

sitive to these parameters. We used α = 1.0, β = 3.0,

and γ = 10.0 for all experiments in the paper. We im-

plemented our method using C++ and the OpenCV

library on a 64-bit Windows PC with an Intel i7-6700K

4.00GHz CPU and 32GB RAM. For an input image

of size 5376 × 2688, it takes a few hundred millisec-

onds (less than one second) to obtain the final rotation

matrix R for upright adjustment.

Evaluation To evaluate the accuracy of our method,

we used 14 ground-truth images, which were carefully

taken with no tilt and roll of the camera using a tripod

with bubble level. To diversify our dataset, we applied

various rotations to each of the ground-truth images

in ten random directions with six different angles. The

amount of six angles consists of 5◦, 10◦, 15◦, 20◦, 25◦,

and 30◦. As a result, we have 14 (images) ×10 (direc-

tions) ×6 (angles) = 840 test images.

For quantitative evaluation, we measured the angu-

lar error between an estimated rotation and its corre-

sponding ground-truth rotation in the dataset. We de-

pict the cumulative histogram of angular errors of our

upright adjustment in Figure 7. Our method shows con-

sistent performance regardless of the amount of initial
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Pole Estimation Average Error GC, VP Detection Average # of Iterations

ours (basic) 0.039 ms 2.36◦ 215 ms 5.15
ours (handler) 0.064 ms 1.79◦ 204 ms 4.89
ours (weight) 0.076 ms 1.36◦ 185 ms 4.23

ours (handler+weight) 0.056 ms 1.29◦ 175 ms 4.11
ours (no resample) 0.013 ms 4.55◦ 46.7 ms 1.00

Bazin et al. [2] 420 ms 3.66◦ 4942 ms 1.00

Table 1 Numerical comparison of different upright adjustment methods. We used our ground-truth dataset for all experiments.
We measured the north pole estimation time, average angular error, great circle detection time (include cubemap conversion),
and the average number of iterations. Ours (basic) is the result of Eq. (1), and Ours (handler) is the result of Eq. (1)
with misclassified 3D horizontal line removal. Ours (weight) is the result of Eq. (2) without misclassified 3D horizontal
line removal. Ours (handler + weight) is our final result with both outlier handling methods. Ours (no resampling) is
the result of Ours (handler + weight) before resampling, i.e., the result of the first iteration. The result of Bazin et al.’s
method is also included for comparison. Ours (no resample) and Bazin et al. do not resample the input image as no iterative
improvement is applied.
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Fig. 7 Cumulative histograms of the angular errors of our
method. We acquired ground truth images using a carefully
installed camera tripod with bubble level. The images were
rotated in random directions by the angles of 5, 10, 15, 20, 25,
and 30 degrees to obtain a set of test samples. More than 90%
of the results have less than 3 degrees of errors. (x-axis) Error
in degree; (y-axis) The proportion of images in the dataset.

angular errors. For more than 90% of the test images,

our method achieves upright adjustment with the errors

less than 3◦. This result demonstrates the robustness

and effectiveness of our method.

Comparison For comparison, we performed the same

evaluation on Bazin et al.’s algorithm [2]. For Bazin et

al., we used the MATLAB code which is released by the

original authors with the recommended parameters. In

addition, we performed the experiments on the variants

of our method to verify the effectiveness of our outlier

handling methods. Table 1 shows the result of each up-

right adjustment method. For different versions of our

method, average errors are reduced as we add our out-

lier handling methods. With our misclassified 3D hori-

zontal line removal and adaptive weight normalization,

each iteration estimates a more accurate north pole di-

rection and it makes our algorithm converge quickly.

Therefore, our final method achieves the best perfor-

mance in terms of both accuracy and total computation

time among all variants.

For Bazin et al.’s method, it works reasonably well

when input images satisfy the Manhattan world as-

sumption, but it fails when the assumption is not sat-

isfied or an image contains many natural structures.

Therefore it totally failed more than 10% of our dataset.

Figure 8 shows typical examples of the failure cases of

Bazin et al. Regarding the algorithmic aspect of Bazin

et al’s method, it detects many great circles without

vertical/horizontal line clustering and outlier handling,

and uses a RANSAC approach to find a solution for ro-

tation estimation, incurring heavy computation. With

our line clustering based great circle detection and out-

lier handling, as well as direct optimization of a quadric

cost function, our method is more accurate and com-

putationally efficient than Bazin et al.(Table 1).

Horizontal line constraint Upright adjustment can be

achieved if we have two accurate great circles corre-

sponding to 3D vertical lines. However, in practice, it

is difficult to directly extract accurate vertical great

circles from an input spherical panorama. To resolve

this, we have the constraints using both horizontal and

vertical line segments in our cost function for upright

adjustment. At the first iteration of our upright adjust-

ment, the constraint from the vanishing points of hor-

izontal lines plays the role of a regularizer that guides

vertical line segments to determining the correct north

pole. As the iteration goes, the vertical line segments

become more accurate (Figure 6), and the constraints

from horizontal lines help improve the accuracy of the

computed north pole rather than regularizing. Figure 9

demonstrates that the accuracy of upright adjustment

is improved as the horizontal line constraint is included

in Eq. (1).

More example results Figure 11 shows various exam-

ples of our upright adjustment of spherical panoramas.

Our method works well even when horizontal and verti-

cal line segments are not clearly identified in the input

images. The supplementary material includes natural
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(a) Input image (b) Result of Bazin et al. [2] (c) Our result

Fig. 8 Failure case for Bazin et al.’s method. It suffers from natural structures like trees, which yield many outlier great
circles. On the other hand, our method is more robust against such outliers because our great circle detection using spherical
Hough transform can exclude small line segments extracted from tree branches.

Fig. 9 Effect of the horizontal line term in our cost function. In a scene without vertical lines (left), using only the vertical
line term would not succeed (center). This case is handled by including the horizontal line term (right).

scenes with successful upright adjustment results, al-

though our method assumes Atlanta worlds with man-

made objects. Successful upright adjustment results for

blurred images can also be found in the supplementary

material. Furthermore, our algorithm can be extended

to slanted video and make it look comfortable and sta-

ble adjust using upright adjustment.

Failure cases Figure 10 shows failure cases of our method.

In the case of top row, the input image does not follow

the Atlanta world assumption. There are many diago-

nal lines on the ceiling, which hinder our algorithm. In

the case of bottom row, the input image contains dense

nature structures. There are many short lines on trees,
and they cause false positive great circles. If the input

image does not satisfy the Atlanta world assumption

or has very few positive great circles, our method could

fail to achieve accurate upright adjustment results, even

though there are several successful examples for such

cases presented in the supplementary material.

7 Conclusion

With the increasing popularity of consumer 360 cam-

eras and VR headset devices, it is important to pro-

vide comfortable and pleasant experience on consum-

ing spherical panorama contents while user-created 360

contents are prone to be mis-oriented, which makes

VR experience unpleasant. In this paper, we have pre-

sented upright adjustment for 360 spherical panoramas

which can greatly improve VR experience. From noisy

edge information in an image, we cluster the horizontal

and vertical lines and estimate great circles by spheri-

cal Hough transform. Then, we estimate the north pole

direction as an upright position of the image through

iterative optimization. We handle outlier lines robustly

by using vanishing points of horizontal lines and sta-

bilize the convergence by adaptive weight normaliza-

tion. Our method is computationally efficient and works

fast even with our unoptimized implementation. With

our method, accurate upright adjustment of 360 spheri-

cal panoramas can be achieved to provide comfortable

viewing experience. Our method could also be used as a

pre-processing step to calibrate the initial orientation in

various 360 VR applications, such as 360 image editing

and video stabilization.

There are few directions for improving our method.

We approximate spherical arcs by clustering line seg-

ments with slanted angle, and it causes iterative ad-

justments accordingly. Direct detection of spherical arcs

would make the computation of great circles more ro-

bust, which can lead to improving the accuracy of our

method. For simplicity, we use rasterization over the

unit hemisphere to determine the intersections of great

circles for vanishing points detection. Analytic inter-

section computation of great circles would also improve

the accuracy and speed of our method.
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(a) Input image (b) Our result (c) Expected result

Fig. 10 Our failure cases.

Fig. 11 Our upright adjustment results for 360 spherical panoramas. (top) input images. (bottom) our results.
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