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Abstract
In this paper, we present a new framework to determine up front orientations and detect salient views of 3D models.
The salient viewpoint to human preferences is the most informative projection with correct upright orientation. Our
method utilizes two Convolutional Neural Network (CNN) architectures to encode category-specific information
learnt from a large number of 3D shapes and 2D images on the web. Using the first CNN model with 3D voxel data,
we generate a CNN shape feature to decide natural upright orientation of 3D objects. Once a 3D model is upright-
aligned, the front projection and salient views are scored by category recognition using the second CNN model.
The second CNN is trained over popular photo collections from internet users. In order to model comfortable
viewing angles of 3D models, a category dependent prior is also learnt from the users. Our approach effectively
combines category-specific scores and classical evaluations to produce a data-driven viewpoint saliency map. The
best viewpoints from the method are quantitatively and qualitatively validated with more than 100 objects from 20
categories. Our thumbnail images of 3D models are the most favored among those from different approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image

Generation—Display algorithms, Viewing algorithms I.5.1 [Pattern Recognition]: Models—Neural Nets

1. Introduction

Over the past decade, the increasing number of 3D mod-

els have been organized and classified mainly through

human endeavors [SMKF04, WSK∗15]. Based on human

annotations of pre-organized data collections, this paper

focuses on the upfront orientation and salient view es-

timation of virtual 3D objects. In handling 3D objects,

the automatic detection of upright, front orientations is

useful for efficiently aligning, browsing, and arranging 3D

models [CTSO03, SSB13, FRS∗12]. Better selection of

viewpoints also helps us to understand many 3D models

without actually downloading the whole data or repeatedly

scanning their projections in a 2D display device.

What is a natural pose of a 3D object? How do

we define a good view? This problem is known as

a key topic in selecting salient views of 3D models.

† Corresponding Author

Researchers have proposed a variety of measures for

defining a good viewpoint. However, most previous

approaches [PPB∗05, SLF∗11, LST12, LSN∗14] are lim-

ited to using low-level data attributes. Consequently,

the selected salient views do not always correspond

to our common knowledge of the objects. We assume

the object appearing in a specific viewpoint should

be easily recognized by individuals. The other ap-

proaches [FCODS08, MS09, LZH12, ZLJW15] study some

high-level measurements in seeking meaningful informa-

tion, but generalization of the hand-designed features is not

always straightforward for more sophisticated cases.

To resolve these issues, we first define a salient view as

relative angles to the absolute standard, such as upfront

orientations. Thus, we decompose the task of finding the

best viewpoint into two sub-problems. One is estimating the

upright orientation of a 3D object. The other is selecting the

front view or even more salient projections of the upright

model in the 2D domain.
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(a) Random projection (c) Our salient views(b) Upfront orientation

Figure 1: Finding up front orientations and salient views of 3D models. (a) Thumbnail images from random projections. (b)
Front views of upright objects. Our method estimates the upfront angles using classifiers trained with internet data collections.
(c) The salient views to human preferences. Viewpoints with maximal saliency are given by the presented data-driven approach.

We assume that there are some high-level patterns for

the particularly preferred poses of 3D shapes, and people

tend to preserve their photos when the 2D viewpoints

are easily recognizable and maximally informative. In

order to solve the problems in a scalable way, we take a

data-driven approach with internet data collections and

consider the deep Convolutional Neural Network (CNN)

architectures [KSH12, WSK∗15]. The CNN scores are used

for assessment functions in finding upright, front vectors as

well as salient views of 3D models.

Most objects have a preferred upright orientation in shape

recognition [PRC81, TP89]. Our main assumption when

encoding 3D data is that its orientation and categorization

are independently learnable, but the relation between them

should be considered in the final decision. Therefore, the

first CNN architectures are instantiated in parallel to inde-

pendently train two semantic properties: upright orientation
and shape templates. Since the base of an object is closely

related to its shape category [ea92, FCODS08], we then

combine each output from the CNN models into a single

shape descriptor.

With the second CNN architecture, visually preferred 2D

patterns for object categories are encoded for a semantic

score in measuring familiarity with a projection. What is

salient to human perception depends on one’s own visual

experiences. Hence, we take advantage of a well-known

public image database and assume that a projection that

has higher confidence in object recognition receives higher

saliency. Moreover, as studied in [PRC81, BTBV99],

individuals are comfortable with viewpoints where an

object in a known category is most often seen. We have

modeled the human preferences of natural views according

to each object category, so these semantic measurements

are category-specific. The final viewpoint saliency considers

both the high-level attributes and classical evaluations so

that our best viewpoints can be upfront projections or

projections that are more salient to human eyes.

The key contribution of this work is automatically encod-

ing natural bases and informative projections of 3D models

by studying CNN architectures for the best view selection

problem. We observe the solution becomes more reliable as

the number of well-aligned 3D models and category-labeled

2D pictures increases. Secondly, the automatic detection of

up-front orientation also facilitates modeling the familiar

viewing angles of different categories of objects. It is

important to note that economical representations, such as

thumbnail icons and previews of 3D models, are directly

created by the familiar viewpoints, which helps us to

recognize the 3D data more effectively than those from

other algorithms.

Our algorithm works well for both artificial objects and

non-rigid animal models. To evaluate our results quantita-

tively, we conduct a user study that confirms the thumbnail

images from the viewpoints with maximal saliency are

the most preferable in comparisons with results using only

low-level attributes or random projections. In the qualitative

comparisons with our baseline algorithms [LST12,SLF∗11],

we show perceptual improvements of our method using

CNN activations over the other two methods. We believe

this ultimately gives benefits to any types of display devices

for 2D projections or user interfaces between humans and

virtual 3D models.

2. Related work

In selecting the best view of a 3D object, there have been

some open problems, such as finding upfront orientations

of non-rigid objects and defining salient projections to hu-

man perception. We refer to the most representative works

regarding these aspects.

Best view selection Psychophysical studies have shown that

different views of a 3D object are not equally preferable

[PRC81, BTBV99]. One reason is that we are sensitive to

certain types of stimuli, such as contrast/curvature, complex-

ity, and visibility.

The majority of previous works on viewpoint selection

were based on low-level attributes, such as silhouette length,

projected area, surface visibility, and other geometric quan-

tities of projections [PB96, HS97]. Early work by Vázquez

et al. [VFSH01] also used Shannon entropy to find the best

view that maximizes the amount of information. Besides

evaluating the 2D projections, Lee et al. [LVJ05] considered

Gaussian-weighted mean curvatures as mesh saliency. Leif-

man et al. [LST12] introduced the local and global distinc-

tiveness of vertices for estimating 3D saliency, which was

extended by Shtrom et al. [SLT13] to detect the saliency for

large-scale point sets.
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Figure 2: System overview

To develop general frameworks, Polonsky et al. [PPB∗05]

combined multiple measurements into a view descriptor, in-

cluding surface area entropy, visibility ratio, curvature en-

tropy, silhouette length, silhouette entropy, and topological

complexity. Secord et al. [SLF∗11] utilized the linear re-

gression framework with multiple attributes in 2D and 3D

to evaluate viewpoint saliency and they combined the eval-

uations using weights learnt from user preferences. In a re-

cent work, Lienhard et al. [LSN∗14] also obtained the view

attributes taken by stochastically sampling a rule set of ren-

dering parameters. The best thumbnails were recommended

after grouping possible view attributes and sorting them by

the user-defined number of clusters.

Compared with previous works, our approach chooses the

best view by not only using low-level attributes, but also se-

mantic scores. Focusing on natural orientations of objects,

we select views that are effectively appealing to people.

Semantic views of 3D models Familiar features, such as

the eyes of animals, ground planes, or natural orientations,

make objects more readily recognizable [ea92, TK01]. In

this sense, some researchers attempted to obtain semantics-

driven viewpoints by identifying mesh segments [MS09,

CGF09]. Meanwhile, Podolaket al. [PSG∗06] introduced

the planar-reflective symmetry transform and chose natural

viewpoints by minimizing redundant symmetry. The concept

of symmetry also provided a strong cue for upright orienta-

tion from the famous work [FCODS08]. By analyzing the

characteristics of base planes, this approach extracted other

geometric features, such as stability, parallelism, and visibil-

ity, from training examples. They encoded typical patterns

of true ground planes, but the scope of this method was lim-

ited to man-made, rigid objects.

Recently, researchers have organized and utilized large

3D collections or databases of images for recovering seman-

tic structures of data from low-level features [HCX∗13]. For

example, H. Laga [Lag11] treated the best-view selection

problem as feature selection and classification tasks and pro-

vided category-dependent viewpoints in a data-driven man-

ner. Liu et al. [LZH12] collected web images with a known

category and processed them into feature vectors for check-

ing the similarity to projections of 3D shapes. Another ap-

proach conducted a simple, statistical analysis of a high vol-

ume of internet photos in order to directly determine the

canonical views [HO05, MW12]. In addition, [ZLJW15]

demonstrated that the semantic viewpoints can be trained

even by hand drawings.

However, these solutions are affected by not only their

own data collections, but also all the steps of extracting

hand-crafted features from high-dimensional inputs. With-

out proper prior knowledge, the specific methods often cause

the loss of information when dealing with different datasets.

Deep Learning There is classical evidence of the rela-

tion between the favored viewpoint and the accuracy/speed

of its category recognition [SM71, PRC81, TP89]. Based

on this correlation, the shape recognition performance is

greatly improved by finding the most informative view-

points [CPCP15, WSK∗15]. In contrast, our primary goal in

this paper is not to increase the 2D/3D recognition accuracy

itself, but to take upright orientations and viewpoints pre-

ferred by human perception with the aid of machine learn-

ing schemes. Also, our work differs from pose estimation,

which typically refers to the problem of recovering poses of

captured objects from input images [LPT13, SQLG15].

The Convolution Neural Network (CNN) has multiple

layers of filter coefficients that produce compressive repre-

sentations of input data with relatively little prior informa-

tion. For instance, Krizhevskyet al. [LZH12] successfully

captured low-dimensional semantic features from pixel ob-

servations by handling various kinds of variations in the

image collections [KH11]. Followed by decision layers,

the supervised learning methods showed the best perfor-

mance in many labeling problems [KSH12,GDDM14,SZ15,
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WSK∗15, QSN∗16, SMKLM15, HZRS15]. As CNN has be-

gun a new trend, especially in extracting features, we take

advantage of this mathematical tool for finding the upright

orientation and salient views of 3D models.

This breakthrough is possible when the quality and quan-

tity of human annotations are ever-increasing and millions

of internet photos have become easily accessible [EVGW∗,

DDS∗09, LMB∗14]. In object recognition, it is now well-

known that deep learning can benefit from a large amount

of annotated data. In this paper, we have demonstrated how

to apply deep learning to viewpoint selection. By using the

already annotated image data together with the bounding

boxes, object recognition becomes an important metric func-

tion for choosing the most salient renders.

Simultaneously, Yumer et al. [YAMK15] employed the

deep learning framework for reducing a parametric space

in high-dimensional procedural modeling. The shape vari-

ations and rendering parameters were encoded for a user-

friendly interface, while we particularly focus on the learn-

ing viewpoint parameters of the renders.

3. Overview

Our system utilizes upfront 3D shapes and labeled 2D pho-

tos together with bounding box annotations. Based on the

large-scale data collection, we correct the upright orienta-

tion of an input object. By rotating the upright model with

pitch and yaw angles, we generate possible projections. We

evaluate every sample projection with different geometric

and semantic score functions. The upfront view and the most

salient view are given by combining these evaluation scores.

An overview of our approach is illustrated in Figure 2.

Given a 3D model, our first goal is to detect a natural

base (Section 4), which determines the bottom side of a 3D

model. This problem can be formulated as maximizing the

saliency score of a base:

b∗ = argmax
b

Sb(M,b|M) (1)

where M denotes the input 3D model, M is a shape

database for learning natural orientations, b indicates a set

of candidate bases of the model, and Sb is a function of the

saliency score for upright orientation. We generate b with

stable planes of a convex hull of the input object. From the

3D data with different bases, we train a deep CNN for ex-

tracting shape descriptors. The 3D shape is encoded in terms

of the candidate bases b, and a Random Forest (RF) classifier

is trained and tested with the shape features. Having detected

the ground plane with the maximum score S∗
b , we then cor-

rect the upright orientation of the 3D model as the normal

direction of the selected base plane b∗.

v∗ = argmaxv Sv(Mb∗ ,v|I) (2)

Given the upright 3D model Mb∗ , the next goal is to de-

tect the informative projection, which maximizes the view-

point saliency (Section 5). We formulate the second problem

as Eq. (2), where v indicates possible viewpoints of the up-

right model, and a set of projected images from the view-

points is similarly computed as the light field representation

in [CTSO03, CPCP15]. In other words, the normal orienta-

tion (φ∗,θ∗) were fixed for all sub-sections of Section 5. For

front orientation estimation, we only search the front yaw an-

gle ψ∗ using classical, low-level information. By consider-

ing category-specific, high-level information, we finally pre-

dict salient viewpoints (θ,ψ) relative to the upfront angles

(φ∗,θ∗,ψ∗).
For each projected view, we compute the viewpoint

saliency Sv using both low-level and high-level evaluations.

The five most effective methods from existing works are em-

ployed for the category-independent measurements, and we

propose novel measurements for the category-specific eval-

uations. The fine-tuned CNN model trained with the large-

scale image collection is utilized in modeling the object-

level saliency, and the category-dependent priors are statis-

tically modeled by user preferences. These are all driven

by the image dataset I. The category-independent and

category-specific evaluations are combined using the linear

weights learnt from human subjects. The saliencies at non-

sampled viewpoints are estimated through interpolation. On

this viewpoint saliency map, our best viewpoint is obtained

at the peak saliency S∗
v .

We qualitatively evaluate the iconic/diagnostic projec-

tions with more than 100 objects, and quantitatively confirm

them by a small user study. The details of the experimental

setup and the results of the algorithm will be described in

Section 6.

4. Learning Upright Orientation

In the first phase of our algorithm, we automatically esti-

mate upright orientation, which means the normal direction

of the natural base plane b∗. Specifically, the semantic prop-

erties of the upright objects are captured in the following

procedures.

Pre-processing Since the mesh representation is not suitable

for the convolutional operation, we can perform 3D convo-

lution of the volume data after voxelizing the 3D shapes. For

pre-processing, a 3D model is voxelized into a 32×32×32

regular occupancy grid. We resize the voxel data to fit into a

unit sphere and place its center at the origin of the Cartesian

coordinate. Any object can be freely rotated around the x, y,

and z-axes in order to align its up vector with the z-axis. In

this manner, our oriented voxel model can be parameterized

by two angles (φ,θ), and is assumed to be the same data with

any rotation around the normal direction of the natural base.

Canonical Orientation Supposing an object is bounded

with a cube, our canonical orientations are defined by the

top, bottom, front, back, left, and right bases of the cube. In

the case of an object that is aligned with the x, y, and z-axes,

one of the six bases becomes a true ground plane of the ob-
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Figure 3: Training CNNs. The CNN parameters are trained
from learning canonical orientations (N=6) and shape tem-
plates (N=12).

ject. Since they indicate specific features within the object,

we learn the classical characteristics of canonical orienta-

tions through examples. Therefore, the semantic labels of

training objects are the six orientations of the axis-aligned

models by setting the different base planes, and all the pos-

sible rotations sharing one base plane are regarded as the

same orientation. In this work, we select 720 objects from

48 different categories, and each of them is rotated around

its up-vector by 10 degrees for data augmentation. In total,

we have 720×36×6 examples for training the CNN layers

in Figure 3.

Shape Categorization We learn the characteristics of shape

categories because certain prototypes of object shapes are

related to their natural bases. Since there are some ambigui-

ties between similar categories and there are also not enough

examples for a few categories, we group them as 12 par-

ent categories in terms of shape similarity and functional-

ity. For the shape templates, we employ Aeroplane, Animal

(four legs), Bed, Bottle, Chair, Cup, Human, Monitor, Plant,

Table, Sofa, and Vehicle as the super-classes. In the voxel

space, we define the broad categories to represent similar

shape categories. Shape variations in each broad category

are handled by increasing the number of training examples

with different appearances. We collect 100 objects for each

superclass and create 100× 36× 12 sets of oriented voxels

through the same manner of data augmentation. After that,

we learn the second set of CNN parameters in order to clas-

sify all the training examples into 12 shape templates.

Training CNNs and RFs In order to capture the seman-

tic information of the upright orientation, two CNN mod-

els are separately utilized for learning the canonical orienta-

tions o and shape templates t, respectively, in the identical

architectures. One instance inFigure 3 consists of three con-

volution layers for each, followed by a max-pooling layer,

standard normalization [KH11, KSH12], and two fully con-

nected layers. The first layer has a 5× 5× 32 filter process-

ing 32× 32× 32 voxel data, while the candidate up vector

is aligned with its z-axis. After training two sets of CNN pa-

rameters with different semantic labels, we replace the soft-

max layer of the CNN models with a Random Forest classi-

fier. To achieve synergy between two independent semantic

features, we concatenate each activation of the CNN mod-

els and train the new classifier. To be specific, two sets of

RF
nb

RFt=1

RFt=2

RFt=3

…

RFt=12

Orientation

Proposal

Template?

Upright?

Oriented Voxels
Feature Extraction
using CNNs

Natural Base Detection
using RF Classifiers

Encoding

Canonical

Orientations

Encoding

Shape

Templates

Figure 4: Training RFs using shape features. All the candi-
date bases b from a convex hull of an object are scored by
the output Sb of the classifier RFnb. Note that high saliency
is colored in red.

64-dimensional activations from each of the last fully con-

nected layers are combined into a shape feature vector as:

DM(M,b) = [CNNo(X (M,b)|M) CNNt(X (M,b)|M)](3)

where X (M,b) denotes the rotated voxel data for align-

ing a candidate up vector with its z-axis. Note that the pose

and category of this data is invariant to rotations around the

z-axis. From the voxel data with different poses and cate-

gories, CNNo is trained for six canonical orientations, and

CNNt is trained for learning the characteristics of 12 rep-

resentative shape templates. Based on the CNN activations

driven by the shape database M, we define DM as a 128-

dimensional shape descriptor for the given up vector.

Regarding learning the binary decision layers, we fix all

the CNN parameters and train the RF classifiers with dif-

ferent guidances. For example, the classifier for a natural

base RFnb is trained with the 128-dimensional semantic vec-

tors with a binary label, whether it is a true ground plane or

not. Besides the natural base detection, we additionally train

12 class-specific RF classifiers RFt (t = 1,2, ...,12) with the

shape features and their memberships to the broad shape cat-

egories. In the stage illustrated in Figure 4, the shape features

with respect to the candidate bases from orientation propos-

als can be collected as negative samples. Since the pose and

category of this data is invariant to rotations around the up

vectors, our data augmentation has been shown to be effec-

tive in deeply encoding upright orientation along the z-axis.

To the best of our knowledge, this is the first work to

reformulate classical problems such as upright orientation

estimation with a deep representation. In this paper, we uti-

lize the same CNN structure for learning upright orienta-

tion as well as shape categorization, but the shape recog-

nition based on upright 3D data is one of the active ar-

eas using deep learning frameworks. By replacing the rel-

atively simple architecture with state-of-the-art CNNs such

as [WSK∗15, QSN∗16, SMKLM15], we can expect to fur-

ther improve our results with better CNN shape features.
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Orientation Candidates Inspired by [FCODS08], our up-

right orientation proposal is based on the stable planes from

a convex hull of a 3D model. Once we compute all the

faces of the object convex hull, all coplanar polygons are

merged to form one candidate base with the same up vector.

The overall procedures are similar to those in the previous

method, but we do not limit the candidate bases with the

strict condition that the projected center of mass should lay

on the supporting plane. Instead, we measure the Euclidean

distance between the projected center of a 3D model and the

barycenter of the supporting plane and sort all the candidate

planes in terms of the distances. With this simplified con-

vex mesh model, our system sets the maximum number of

orientation candidates as 128, which allows it to sufficiently

include the true ground plane of non-rigid objects even with

unstable poses.

Natural Base Detection Given the trained CNN parameters

and RF classifiers, we now query an input model with an

unknown category and a random pose. For the first step, we

generate the candidate up orientations from the stable bases

of its convex hull. At every possible orientation, the model is

rotated to ensure the current up vector becomes the z-axis in

the voxel coordinate. The shape features are then extracted

from two CNN models, and the CNN features from differ-

ent annotation guidances are cascaded to form a single shape

feature. Then, the combined feature vector is shared by the

RF classifier for finding a natural base as well as 12 class-

specific RF classifiers, so that the upright score is more re-

liable when the maximum value from the shape recognition

scores is also high. As in Eq. (4), the 128-dimensional shape

features for each candidate base are finally scored in the fol-

lowing:

Sb(M,b|M) = RFnb

(
DM(M,b)

)
(4)

After testing all the candidate orientations, we pick the

most salient base as the natural base of the input model.

By setting the up vector with the maximal saliency, the

pose of the model is corrected by the estimated orientation.

On the upright orientation, we predict its broad category

with the most confidence out of all class-specific RF clas-

sifiers, as displayed in Figure 4. The category prediction,

S∗
t = RFt

(
DM(M,b∗)

)
, computed similarly to Eq. (4), is

utilized to select the natural renders in the next phase of our

algorithm.

5. Modeling Viewpoint Saliency

After upright orientation estimation, the up vector of a 3D

model is fixed with the z∗-axis. Now, the second phase of

our algorithm finds a salient viewpoint among the candidate

viewpoints v ranged from θ : [−π/2,π/2], ψ : [−π,π]. θ and

ψ stand for rotation angles about the y-axis and z-axis, re-

spectively. We generate possible renders of the 3D model by

sampling viewpoints at every 22.5◦ pitch angle θ and 22.5◦

-
a

c

b

(c)(a) (b) (d)

Figure 5: Surface curvature. (a)-(c) are different projected
views of HORSE. (a) is the view with maximum saliency, (b)
is the front view of the model, and (c) is the view with min-
imum saliency. The color coded on the mesh model are the
estimated curvature saliency.
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Figure 6: Effect of classical saliency evaluations. The cor-
responding views with the maximum saliency are shown.

yaw angle ψ. The saliency at the 8×16 viewpoints are com-

puted using eight different methods. To evaluate the uniform

size of the projected views, a virtual camera is directed at

an object in the fixed distance, and its focal length is long

enough to ensure there is little projective distortion in the

projection.

We will first describe our five low-level and three high-

level evaluations for each sampled projection. After that, we

will explain the optimal weights for combining all the eval-

uation measurements. Our final viewpoint saliency map in-

dicates all the iconic, discriminative information for under-

standing the input 3D data.

5.1. Category-independent Evaluations

We use five low-level saliency measurements, which are in-

troduced in the previous literature [LVJ05, LST12, PB96,

HS97, VFSH01]. The low-level attributes are solely deter-

mined from the geometry of the 3D model and its projection

without any prior information about the object category of a

model. In this sense, they are category-independent. Figure 5

and Figure 6 illustrate the effects of different low-level eval-

uations. The 2D representation is an unwarped saliency map

on a unit sphere, and all of these saliencies are normalized to

[0,1] by the maximum value of the viewpoint saliency map.

Surface Curvature ( fsc) For this evaluation, we com-

pute Gaussian-weighted mean curvatures of every vertex

by [LVJ05], and the curvature values are smoothed over

the surface in the manner of [LST12]. The higher the cur-

vature of a vertex, the higher the saliency it represents.

This saliency is propagated to mesh surfaces according to

geodesic distances to all the other vertices. To compute the

saliency of a projected viewpoint, the 3D saliencies are pro-
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jected onto 2D images according to the viewpoint parame-

ters. We aggregate and normalize the saliencies of the visible

surfaces to form the saliency evaluation of a particular view.

Projected Area ( fpa) This attribute evaluates the saliency

by maximizing the area of projection of a 3D model. This

is proportional to the size of the observed silhouette. The

larger the area in the image domain that it is projected, the

higher the chance the object’s projection will give enough

information.

Silhouette Length ( fsl) This attribute evaluates the saliency

by measuring the length of the silhouette boundaries pro-

jected on a 3D model. If the silhouette length is longer, it is

believed that the projected viewpoint is more complicated.

Thus, the silhouette length receives higher saliency when

more complex boundaries appear in the projected view.

Surface Visibility ( fsv) This attribute is similar to the eval-

uation of the projected area. The difference is that it maxi-

mizes the area of visible 3D surfaces instead of maximizing

the area of a 2D projection. This estimation can be achieved

by measuring the area of visible surfaces in comparison to

the total area of the surfaces of a 3D model.

Viewpoint Entropy ( fve) In addition to the surface visibil-

ity, we consider the distribution of fractional visibility. The

fractional visibility is defined as the area of a projected mesh

face divided by its original area in the 3D domain. The dis-

tribution of the visibility is related to the diversity of the sur-

face normal directions observed at a certain viewpoint. By

computing the Shannon entropy of the distribution of frac-

tional visibility, the best viewpoint favors surface variations

in the presented projection.

5.2. Category-specific Evaluations

Our high-level evaluations are motivated by a psychophys-

ical experiment by Palmer et al. [PRC81]. In the experi-

ment, they asked human subjects to select the best canoni-

cal views of different objects. Unsurprisingly, different cate-

gories of objects have different preferred viewpoints. In the

same manner, we hire a deep CNN model trained on Ima-

geNet to recognize the category of tested 3D objects. For the

object-level evaluation, the easily recognizable renders are

preferred to other viewpoints with low classification scores.

With a category identified in the recognition step, the com-

fortable angles are guided by a simple statistical model.

Category Recognition ( fcr) We use the category informa-

tion both in upright estimation and salient view detection. In

upright estimation, however, the initial voxel representation

does not give any preference to viewing angles. Therefore,

the category of 2D projections is finally confirmed using the

initial shape recognition scores.

In this paper, the category recognition score is based
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Figure 7: Category recognition. Higher saliency is given to
viewpoints which are easier to recognize.
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Figure 8: Recognition saliency map. (a)-(c) are different
projections of DOG. (a) is the most easily recognized view.
(c) is the worst view for recognizing the model.

on AlexNet trained with the large scale image collec-

tion from [EVGW∗, DDS∗09, LMB∗14]. This is because

AlexNet is one of the standard CNN architectures [KSH12],

which can also be replaced by deeper architectures such

as [SZ14,SLJ∗15,HZRS15] that achieve state-of-the-art ob-

ject recognition performance. The pre-trained CNN model

uses 1,000 categories, which are too specific in our task. For

simplicity, we assume the 3D objects in our experiments be-

long to one of the standard PASCAL (Pattern Analysis, Sta-
tistical Modelling and Computational Learning) categories

12 man-made subcategories and 8 non-rigid animal subcat-

egories. After collecting additional images from [EVGW∗,

LMB∗14] for each category and converting them in the gray

scale, we fine-tune AlexNet with a new soft-max layer. Us-

ing this scheme, the 4096-dimension activations in the last

layer are now linearly mapped to the 20 dimensions of a cat-

egory score vector. For each projected viewpoint, the fine-

tuned CNN model outputs a vector of classification scores.

sc(v) = CNNi(mv|I), (5)

where sc denotes the recognition score for the category c,

CNNi(·) is our second CNN architecture, and the training

image set I has 90,000 gray images from the 20 categories.

mv is the rendered image of an upright 3D model Mb∗ at

viewpoint v. Figure 7 illustrates the recognition score of a

chair object with different viewpoints. The viewpoints that

are easier to recognize received higher scores.

Since individual classification with different viewpoints

can be noisy due to the model properties and rendering con-

ditions, we apply Markov Random Field (MRF) to the sam-

pled viewpoints to correct errors and enforce the smooth-

ness of the estimated recognition saliency. For this step, prior

knowledge from its 3D shape is recollected for improving

the recognition accuracy. By mapping the 12 prototypes of

the 3D shapes into 20 PASCAL categories, we set the bias

values s∗t for 2D classification from the previous 3D classi-

fication scores S∗
t . For some parent categories in 3D, all the
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related PASCAL classes in the similar structure are believed

to have the same bias values. For example, a four-legged An-

imal prototype has the following five child categories in the

projection domain: CAT, COW, DOG, HORSE, and SHEEP.

argminc ∑
v

Ed

(
λ1s∗t + sc(v)

)
+λ2 ∑

v
∑

v′∈Nv

En

(
sc(v),sc(v′)

)
(6)

where sc(v) is the recognition saliency of category c at

viewpoint v, Nv is the first-order neighboring viewpoints

of v defined over the sampled viewpoints in 2D, and s∗t is

the prior from the previous shape recognition. With this bias

term, the data term energy Ed has an offset value that is uni-

formly distributed and added to the saliency of the 20 cat-

egories. En is the smoothness term energy defined by a di-

agonal matrix, where each diagonal entry is the l2-norm dis-

tance between sc(v) and sc(v′). In this work, we use λ1 = 0.2
for the biasing effect and λ2 = 0.1 for the regularization.

To recognize the category of an object, we sum up the

recognition saliency of all sampled viewpoints after MRF

smoothing. The category that receives the highest total sum

of saliency will be regarded as the estimated category of

the tested object (c∗ = argmaxc ∑v sc(v)). As a result, the

recognition saliency map of that category will be regarded

as the category recognition viewpoint saliency map ( fcr =
sc∗ ). Figure 8 shows an example of our recognition saliency

map. This figure shows an interpolated map with category

recognition scores from 8 × 16 viewpoints. The recogni-

tion saliency map indicates how important one viewpoint is

over other viewpoints, while each category recognition score

comes from an object recognition metric for a specific view-

point.

Category Dependent Prior ( fθ, fψ) The recognition

saliency evaluates the viewpoints according to ease of recog-

nition, but the easiest recognizable view may not generally

be the most typical view for the category to people. As stud-

ied in [BTBV99, SLF∗11], some objects are more comfort-

ably viewed from the most frequently observed viewpoints.

We model this prior by manually annotating the presented

orientations of objects in the internet photos. We count how

often people capture the object at certain viewing angles in

the 8 × 16 discrete space of the (θ,ψ) coordinate. In this

voting space, every count has three levels of a comfortable-

ness score for one sample image. Based on the collected user

preferences from the randomly selected 5% of our training

examples (225 for each category), we statistically model this

prior for each category.

fθ(v) =
1

Z ∑
k

4a · exp
(

b · (θ−θc(k))
)

{
1+ exp

(
b · (θ−θc(k))

)}2
, (7)

fψ(v) =
1

Z ∑
k

4a · exp
(

b · |ψ−ψc(k)|
)

{
1+ exp

(
b · (ψ−ψc(k))

)}2
(8)

where θc(i) is the tilt angle of a selected viewpoint, a
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Figure 9: Category dependent priors. Our category depen-
dent priors of CHIAR on the tilt (pitch) angle and rotation
(yaw) angle are shown.

is the comfortableness score {0,1,2}, b = 2 is a parame-

ter for controlling the decay rate, and Z is a normalization

constant. Eq. (7) is the first-order derivative of the sigmoid

function, which has the peak value at the weighted averages

of pitch angles θc. This equation is a smooth function that

gives higher saliency to the angles that are closer to the most

commonly selected pitch angle. Figure 9 illustrates the effect

of this prior. The prior for yaw angle fψ is defined similarly,

but we take the absolute operation in order to hold a symmet-

ric property of the side views. Additionally, ψc is not defined

in some objects with rotational symmetry. This means each

angle is category-dependent, so we separately model the pri-

ors for tilting and rotating the natural base, respectively.

5.3. Front Orientation

Learning front orientation requires more 3D objects because

data augmentation by rotating around an up-vector is no

longer available. In practice, we recover the front orienta-

tion of a given upright object with 2D cues rather than direct

3D information. We assume correct roll and pitch angles and

only search for the front yaw angle ψ. The front view is de-

fined as the most complex, semantic part with two symmetric

sides of upright objects.

In our front orientation proposal, we utilize the follow-

ing three low-level saliencies: surface curvature, silhouette

length, and viewpoint entropy. The candidate front angles

are collected when the projection measurements of its side

views are similar to each other. We pick several peak po-

sitions for the candidate angles in terms of the similarity of

these attributes and select the front orientation, which has the

maximal category recognition score among those of other

candidate positions. The center position of our viewpoint

saliency map is then set to the estimated front angle ψ∗.

Once we mark the front view on the map, other canonical

orientations, such as back, top, bottom, and two side views,

are determined. This is considered our intermediate output.

5.4. Linear Regression

Our final step is to merge the individually estimated saliency

maps, { fse, fpa, fsl , fsv, fve, fcr, fθ, fψ}, to form the final

saliency map Sv. We use a linear regression approach:

Sv = [ fse, fpa, fsl , fsv, fve, fcr, fθ, fψ]wT
(9)

where w ∈ R8×1.
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(a) 3D Saliency (b) Combined low level Saliency

(c) Recognition Saliency (d) Our Final Saliency

Figure 10: Linear regression. (a) 3D saliency estimated by
surface curvature. (b) Saliency map which combined all low-
level evaluations. (c) Recognition saliency map. (d) Saliency
map which combined both category-specific/independent
evaluations. The combined weights are estimated from col-
lected user preferences.

To estimate the optimal weight w, we collect user pref-

erences for our projection images. We render five upright

objects from each category with 8×16 viewpoints. We then

ask 20 users to select 6-8 best views that they feel the most

comfortable with to represent the rendered model. Similar to

the category-dependent prior, we learn a different w for each

category c. This is because different categories of objects ex-

press different behaviors in terms of user comfortableness.

We then solve the equation, which minimizes:

w∗
c = argminw ∑

v∈Vc

|| f ∗(v)wc
T−1||2 + ∑

v�∈Vc

|| f ∗(v)wc
T||2(10)

subject to ∑8
k=1 wc(k) = 1, and wc(k) ∈ [0,1], where Vc

is the collection of user-selected viewpoints for category c,

and f ∗ = [ fse, fpa, fsl , fsv, flc, fcr, fθ, fψ]. Note that Vc al-

lows multiple instances for the same viewpoint. Thus, if cer-

tain viewpoints are selected multiple times by users, this has

higher inference for the estimation of wc. Eq. (10) estimates

the user-dependent weight by maximizing the saliency in

Sv for viewpoints selected by users, and it minimizes the

saliency for viewpoints that were never selected by users.

Due to our limited number of human subjects, we fix the

weights for low-level measurements [ fse, fpa, fsl , fsv, fve] for

all categories as the same in [SLF∗11] during the optimiza-

tion.

Figure 10 shows our combined saliency map. For com-

parisons, we have also shown the 3D saliency map,

category-independent saliency map, and category recogni-

tion saliency map in Figure 10. The category-independent

saliency maps are combined with weights defined over

[ fse, fpa, fsl , fsv, fve], and their sum is normalized as 1.

Since we do not utilize any category-specific information

in this low-level evaluation, the same weights to those used

in [SLF∗11] are applied for all categories. As illustrated in

Figure 10, the category recognition saliency has stronger in-

ferences than other evaluations for the final saliency map.

The detected salient views also agree with human prefer-

ences. This is because the frontal-view images of a monitor

appear more frequent than other views in the training data of

the fine-tuned CNN model. Therefore, the CNN activation

gives higher confidence to frontal views in the recognition.

48 Shape Categories 12 Shape Templates 20 PASCAL Categories
AIRCRAFT, BIPLANE AEROPLANE AEROPLANE

CAMEL, CAT, COW, DOG, ANIMAL(4-LEG) CAT, COW, DOG,

ELEPHANT, HORSE, LION, SHEEP HORSE, SHEEP

BIRD BIRD BIRD

BOTTLE, VASE BOTTLE BOTTLE

BENCH, CHAIR, TOILET CHAIR CHAIR

BATHTUB, BOWL, BOAT, CUP, SINK BOAT BOAT

HUMAN HUMAN HUMAN

LAPTOP, MONITOR, TV MONITOR MONITOR

PLANT, FLOWERPOT PLANT PLANT

SOFA, BED SOFA SOFA

DESK, STOOL, TABLE TABLE TABLE

BIKE, MOTORBIKE, VEHICLE BIKE, MOTORBIKE,

CAR, BUS, TRAIN CAR, BUS, TRAIN

BOOKSHELF, BUILDING, CONE, OTHERS

CURTAIN, GUITAR, KEYBOARD,

LAMP, PIANO, RADIO,TENT, TV STAND

Table 1: Grouping categories. Our 48 categories of 3D in-
puts are defined into the 12 shape templates. The mappings
from them to the 20 PASCAL categories in the projection do-
main are also shown.

In contrast, using only the category-independent evaluations

detects the view that has the most complex structures.

6. Experiments

In this section, we outline the procedures and examine the

results of our experiments and discuss the benefits and limi-

tations of this approach.

Data Collection Our method determines human preferences

for viewpoints from a large-scale data collection. For learn-

ing 3D shapes of general categories, we downloaded 1,440

models of 48 categories from different datasets [XMS14,

CTSO03, SP04, BRLB14, WSK∗15]. With the rotation en-

largement, we took 1440×36 samples with annotations and

selected some of them for training and test tasks in the pa-

per. Since the availability of 3D models for each category

was different, we also queried some labeled objects of a few

categories in need from 3D Warehouse, Turbo Squid, and

Yobi3D. During this process, we excluded 3D models with

only very few meshes or incorrect normal directions. More

importantly, we noticed that some similar objects had few

variations between their specific categories, and they could

easily be grouped as a common prototype at a higher level.

Table 1 summarizes the mapping from 48 specific categories

to 12 representative shape templates.

In order to determine comfortable viewing angles for ren-

dered images, we collected 2D photos captured by inter-

net users. Following the convention in the classical image

recognition task, we set our final categories as the stan-

dard 20 PASCAL classes [EVGW∗]. In the projection do-

main, several PASCAL categories could have a common

3D shape template according to Table 1. Currently, we do

not have enough texture information for 3D mesh mod-

els, so we used gray-scale images for determining view-

point preferences. We collected 90,000 internet photos of

20 standard categories with the bounding box annotations
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Methods Orientation Upright orientation Front orientation
Proposal Estimation Estimation

OURS (RIGID OBJECTS) 100% 87.7% 83.3%

OURS (ALL CATEGORIES) 98.4% 75.2% 71.8%

[FCODS08] (RIGID OBJECTS) 93.4% 83.1% N/A

[FCODS08] (ALL CATEGORIES) 74.6% 63.9% N/A

Table 2: Up front orientation estimation. The algorithm performances of three steps (orientation proposal, natural base detec-
tion, front orientation estimation) are analyzed.

from [DDS∗09, EVGW∗, LMB∗14], and each category had

4,500 training images. From the shape collection, we ran-

domly chose five 3D models for each class, and the render

images of these 100 objects became the test images.

Running Time For the experimental setup, we used one

computer with Intel i7-4790 CPU, Samsung 850 PRO

256GB SSD, and NVIDIA GeForce GTX 980 GPU. The

first CNN model in our upright estimation was a multimodal

architecture taking two independent human annotations in

parallel, followed by fully connected layers leading into

task-specific RF classifiers. Since it was a relatively small

network, the total training time only required less than one

day. The second CNN model was based on deeper represen-

tations with the large scale image collection. It took nearly

three days straight to fine-tune the pre-trained AlexNet with

our own dataset. However, it is noted that the testing time

for one viewpoint of a 3D model was less than three seconds

including the rendering pipeline, while the classical evalua-

tions used in this paper took 15-20 seconds in average, for

each viewpoint. Since we used 8×16 samples for the final

saliency map of a test object, there was a great advantage on

processing time in using CNN features compared to comput-

ing traditional features.

Upfront Orientaion Estimation For the upright orientation,

instead of designing specific feature extraction methods, our

approach increases the volume of training datasets and learns

two sets of flexible parameters with different semantic prop-

erties. In our experiments, the classification accuracy in in-

dependent tasks reached 70% for canonical orientations and

88% for shape templates. After replacing the decision lay-

ers with a RF classifier and concatenating each activation

from the CNN models, we achieved 4.6% and 11.3% im-

provements compared with the classical method, as shown

in Table 2, in detecting the upright orientation of rigid and

non-rigid objects.

One of the reasons that we can handle non-rigid objects

better is the method of generating candidate bases. The as-

sumption for a base that the center of mass should be pro-

jected inside the base plane is true in the real world, but it

often does not strictly hold in non-rigid mesh models due

to some physical conditions. In contrast to the previous ap-

proach, we utilized the stability assumption by simplifying

the convex hull of an object to have a fixed number of faces

(128 in our case). Considering all the faces as possible bases,

we did not miss a true ground plane in the proposal step.

Recently, most 3D models on the web have already been

aligned with canonical axes; thus, we only needed to reverse

top-bottom bases, front-back sides due to the different con-

vention. Thus, our method was especially robust for fixing

the canonical orientations, and it required much less human

intervention in finding the up-front orientation for such axis-

aligned objects.

In the evaluation for front orientation estimation, we man-

ually prepared the front orientations of 3D models according

to our assumptions. For example, the front yaw angle of a

cup with a handle was defined as the view showing that han-

dle. Bottles without handles are rotational symmetric, so any

yaw angles were acceptable.

Best View Selection In the paper, our ultimate goal is to

find salient viewpoints for human preferences. Figure 11 and

Figure 12 show some of the results for qualitative evalua-

tions. The objects in Fig. 11 are examples where the cate-

gory of the tested 3D models was correctly classified, and

the objects in Fig. 12 are examples where the category of the

tested 3D models was misclassified. Additionally, we tested

non-learned objects in Figure 13, and other failure examples

from our algorithm are discussed in Figure 14.

In the first columns of all the figures, the results using only

the hand-crafted features in [SLF∗11,LST12] are presented,

and the results using only the CNN features, without rely-

ing on any hand-crafted features, are presented in the sec-

ond columns. The final results using the combined low-level

saliency, recognition saliency, and category dependent priors

are presented in the third columns.

As shown in Fig. 11, some categories, such as BIKE, have

balanced weights between category-independent and cate-

gory recognition evaluations. We observe that both algo-

rithms give reasonable viewpoints, and our algorithm ex-

plains why people liked such viewpoints in the context of

object recognition. In contrast, for other categories, such as

CAR and TABLE, the category recognition evaluations are

more dominant. Additionally, some objects, such as AIR-

PLANE, BIKE, PLANT, and TABLE, have multiple peaks in

their viewpoint saliency map. This is due to the symmetry

structures of the tested object. For non-rigid animal objects,

such as CAT, DOG, and HUMAN, there is usually a strong

peak near their eyes and faces.
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Figure 11: Qualitative results on our estimated saliency maps and selected best views. Left: Low-level saliency. Middle: Recog-
nition saliency. The recognized object categories are also shown. Right: Our final saliency. The most salient views are shown to
the right of each saliency map. These examples are results where the category classification of tested objects is successful.

In Fig. 12, although the category of tested objects was

misclassified, the detected salient views are still reasonable.

There are two reasons that account for the results. Above

all, the low-level evaluation mostly resolves the ambiguities

in the high-level evaluation to select preferable views, es-

pecially for categories that have balanced weights between

high-level and low-level evaluations. In addition, although

the recognized category may not be perfect, the recognition

saliency map provides meaningful preferences for certain

viewpoints over others. These viewpoints have richer infor-

mation for classification; thus, they are preferable to human

perception. Because of the similarity between categories, al-

though an object was wrongly classified, it was defined as

a category with a similar appearance. For example, a sheep
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Figure 12: Qualitative results on our estimated saliency maps and selected best views. Left: Category-independent saliency.
Middle: Category-recognition saliency. The recognized object categories are shown. Right: Our final saliency. The most salient
views are shown to the right of each saliency map. These are results where categories of tested objects were misclassified.

Figure 13: Qualitative results on our estimated saliency maps and selected best views. Left: Low level saliency. Middle: Recog-
nition saliency. The recognized object categories are shown. Right: Our final saliency. The most salient views are shown to the
right of each saliency map. These are results where categories of tested objects do not belong to the 20 PASCAL categories.

model was classified to the DOG category due to a similarity

in appearance, and the selected salient view is acceptable, as

illustrated in the second row of Fig. 12.

Although it was challenging for this data-driven frame-

work, we also tested our algorithm to see how it would han-

dle non-learned categories. Figure 13 shows the three unseen

objects. The Kentauros in the first row shows the appearance

of a person and horse simultaneously. In this case, the CNN

evaluation scores were strong for the HUMAN and HORSE

categories. After considering spatial smoothness using MRF,

a more consistent category over various viewpoints was de-

termined as HUMAN. Thus, the saliency of the HUMAN cat-

egory influenced the final result, while it preserved low-level

information as well. Even when multiple metaphors from

different categories are implied in the projection, our algo-

rithm seeks the most recognizable part of a known category

from the given image database.

For another example, in the next row we observed that a

wheelchair was classified as BIKE. In this case, the category-

specific saliency of BIKE, which tends to emphasize its big

wheels, influenced the final viewpoint. For the same reason,

if the wheelchair model was classified as CHAIR, it would

have shown familiar parts of chairs while hiding the wheels

instead. We expect that either view does not precisely rep-

resent our typical experience of wheelchairs, but the other

class-dependent terms and the low-level saliencies more or

less prevent the biased results of the recognized category.

The bed shown in the third row of Figure 13 also does not

belong to the PASCAL 20 categories, but it resembles SOFA

over a certain range of views. Therefore, the best view of

SOFA was determined in this case. Likewise, even though a

test object was not included in our 20 categories, any appear-
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Figure 14: Qualitative results on our estimated saliency maps and selected best views. Left: Low level saliency. Middle: Recog-
nition saliency. The recognized object categories are shown. Right: Our final saliency. The most salient views are shown to the
right of each saliency map. These are some failure examples from our algorithm.

(a) (c)(b)

Figure 15: Qualitative comparison with [LST12, SLF∗11]. (a) 3D surface saliency computed by [LST12]. (b) Viewpoint de-
scriptor with the linear weight as in [SLF∗11]. (c) Our data-driven approach. Two models from [LST12] are shown for evalu-
ating our recognition saliency.

ance that resembled one of the PASCAL categories tended

to be selected as a best view. We think this is a safe scheme

because it at least prevents the algorithm from selecting a to-

tally unfamiliar view.

Meanwhile, Figure 14 discusses three of our weaknesses

more explicitly. Firstly, our algorithm failed when the adap-

tive weights for different cues were not working in an ap-

propriate way. In the first row of Figure 14, the final result

was worse than the result using only the CNN activations,

while checking the bottom of a car’s complex structure. Sec-

ondly, CNN tended to show the most frequent view in the

training database, which perhaps not all people favor. In the

current database, the HORSE category does not have many

examples compared to DOG or CAT, and most photos do not

show the face or eyes of a horse. Based on subjective charac-

ters of experience, it may seem that some results of HORSE

mis-classified as DOG actually looked better than the cor-

rectly classified one, as shown in the second row. Lastly,

the rendering pipeline can be improved by using material in-

formation. This is because shape information alone was not

enough to photo-realistically render the objects, as they were

captured in the real-world. For example, we saw the worst

results when the rendered images had some ambiguities in

appearance, as shown in the third row of Figure 14.

Qualitative Comparison with [LST12, SLF∗11] Our

category-independent saliencies consist of the most effec-

tive measurements in [SLF∗11] and 3D surface saliency in-

spired by [LST12]. On top of this, we took advantage of the

key observation that people keep photos of familiar objects

captured at maximally informative viewpoints. Here, the ef-

fect of incorporating the category-specific saliencies with the

classical measurements was compared with two state-of-the-

art techniques [LST12, SLF∗11] individually in Figure 15.

Intuitively, we found the perceptual improvements of our

data-driven approach over the classical evaluations. For ex-

ample, the bottom views of CAR and HORSE involved low-

level information, such as strong curvatures of surfaces, high

viewpoint entropy and the size of the projected area. As seen

in the previous figures, both methods in [LST12, SLF∗11]

tended to emphasize low-level details, while they were not

perceptually important. In contrast, the view with a higher

category recognition score showed more meaningful parts

than the other views that did not have such semantic infor-

mation. Based this qualitative comparison with two different

viewpoint selection algorithms respectively, we confirmed

that the category learning process helps to generate iconic

viewpoints of familiar objects.
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Figure 16: User study. The 52 human subjects select the
best, the second best, and the worst viewpoints among 8 im-
ages of the same object. The 8 images are generated using
our method, our method with only low level evaluations, top
view, front view, side view, and random projections. The bar
graph shows the percentage of the received votes.

User Study In order to evaluate our results quantitatively, we

conducted a user study. In this experiment, 52 human sub-

jects were asked to select the best view, the second best view,

and the worst view among the 8 images of the same object.

The images are from: our approach (1 image), the method

using only the combined low-level saliencies (1 image),

front, side, and top views (3 images), random projections

with upright orientation (2 images), another random pro-

jection with no prior (1 image). For the low-level saliency,

we implemented the existing methods in [SLF∗11, LST12]

and used the same weights of low-level saliencies as written

in [SLF∗11].

In the user study, they received, in total, 20 objects from

each of PASCAL categories selected from our 100 test ob-

jects, and two non-learned objects were additionally given.

For each object, the candidate views from eight different

methods were shown without its category name. The views

were listed in the same order to all subjects. All participants

performed the subject test independently without communi-

cation. Figure 16 shows the bar graph of the voted plots.

For the best view selection, our approach got the largest

number of votes while the side view got the second largest

number of votes. For the second best view selection, the

results from only low-level evaluations received the most

votes. Interestingly, other viewpoints such as front, side, top

and even random projections were often chosen. Based on

this study, we observed human subjects first select the iconic

views which helps to easily recognize its object category.

Once identifying the category, people tend to pick discrimi-

native viewpoints which gives more details about an object.

For example, the side view of BIKE or HORSE got strong

supports for the first selection from users. The top, front and

Viewpoint saliency map (a)

(b) (c) (d)

(a)(b)
(c) (d)

Figure 17: Connecting salient views. (a) is a front view of a
Chair. (b-d) are salient views with peak saliencies. The op-
timal path on the saliency map using dynamic programming
(DP) is shown. Note that we can visit an important view of
the model with a hard constraint (dotted line).

other projections got the positive votes in the second selec-

tion because those views are also informative for better un-

derstanding its unique appearances. The random projections

received most votes for the worst view. This is obvious espe-

cially for some projected views in upside-down because they

are difficult to recognize an object category in a short time.

Showcasing 3D Models Based on our saliency map (θ,ψ),
we defined good viewpoints as the positions in the lo-

cal maximums. The peak points can be estimated us-

ing expectation-maximization (EM) approaches. To con-

nect these good viewpoints for briefly showcasing the ob-

ject around its up-direction axis, we applied dynamic pro-

gramming for its continuous path. Along the optimal path as

shown in Figure 17, the category of the object is easily rec-

ognized from these familiar viewpoints by users. For post-

processing, we took a simple smoothing filter for a more sta-

ble preview.

In the cost map of this optimization, we can also give addi-

tional positive and negative constraints for forcing it to visit

particular positions or vice versa. For example, we can add a

hard constraint to one of the classical layout views, such as

a front view, so that our preview must include it.

Limitations The focus of our work is to utilize category

learning in deciding the most representative, discriminative

renderings of 3D models. Hence, one limitation of this ap-

proach involves the category-specific information. Although

the CNN architecture we used for image feature extraction

was originally designed to handle 1,000 object categories,

the recognition saliency map for one specific category re-
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quired a rich variety of annotated 2D photos. At the mo-

ment, it was difficult to collect an adequate number of well-

cropped, labelled photos. Also, there were some ambiguities

between similar categories due to the overlapping object ap-

pearances.

In this situation, it was relatively easier to collect thou-

sands of photos together with ground-truth bounding boxes

of 20 classical categories and to show the effectiveness of

this approach using the PASCAL categories. Since a large

number of labelled datasets are accumulating annually, we

believe more discriminative sub-categorization will become

available as well.

For estimating upright orientation, we can gain benefits

from already up-corrected 3D models. Our 3D data collec-

tion covers various shape instances; however, the lack of

quantity and quality of training data, such as non-rigid mod-

els with rare or special poses, might lead to ambiguities

in finding upfront orientation. This suggests a future work

where the performances of these tasks can be improved by

increasing the size of the databases even more. One may ex-

pect to overcome some heuristics involved in front-view es-

timation because there are noticeable errors in generalizing

our method for natural objects. This is also due to the lack

of upfront 3D models of good quality.

The scope of this paper is limited to finding the best view-

ing angles, so the rest of the rendering variables are not re-

lated to the object recognition. For this reason, our current

system does not seriously consider the texture information of

3D models. However, the photo-realistic renderings are cur-

rently overcoming the domain differences between virtual

projections and real-world photos, and will possibly improve

our recognition accuracy in the image domain; therefore, not

just viewing parameters in determining human preferences,

but we also suggest all the rendering parameters contributing

a good view should be considered together in the context of

category recognition. We believe this is another area that has

room for improvement in future work.

7. Conclusion

We presented a novel framework to determine natural orien-

tations and salient views of 3D objects. Unlike conventional

approaches, our method learns the high-level semantic

features and utilizes them to reflect human preferences of

salient viewpoints. To pursue a scalable solution, we used a

data-driven approach with two different CNN architectures

for the semantic feature learning with 2D and 3D data.

Using these methods, we reached at the reasonable

performance for the upright correction in the first phase

and the front vector estimation in the second phase of our

algorithm. In this paper, it was also shown that the high-level

saliency favors natural appearances, frequently observed in

our visual experiences, of real-world objects. Based on the

key findings, we proposed class dependent terms and the

optimal weight balance between low-level and high-level

saliencies to prevent the biased view decision.

We qualitatively validated the presented algorithm using

100 objects in PASCAL categories, and quantitatively

confirmed the benefits in the user study. In addition, We

demonstrated possible applications such as thumbnail icons

and attractive previews of 3D models.
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