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Abstract. We present surface normal estimation using a single near in-
frared (NIR) image. We are focusing on reconstructing fine-scale surface
geometry using an image captured with an uncalibrated light source.
To tackle this ill-posed problem, we adopt a generative adversarial net-
work, which is effective in recovering sharp outputs essential for fine-scale
surface normal estimation. We incorporate the angular error and an in-
tegrability constraint into the objective function of the network to make
the estimated normals incorporate physical characteristics. We train and
validate our network on a recent NIR dataset [1], and also evaluate the
generality of our trained model by using new external datasets that are
captured with a different camera under different environments.

Keywords: Shape from shading, near infrared image, generative adver-
sarial network

1 Introduction

Estimating surface geometry is a fundamental problem in understanding the
properties of an object and reconstructing its 3D information. There are two dif-
ferent approaches: geometric methods such as structure-from-motion and multi-
view stereo, and photometric methods such as photometric stereo and shape-
from-shading. The geometric methods are usually useful for metric reconstruc-
tions while the photometric methods are effective in estimating accurate per-
pixel surface geometry.

Recently, with the massive use of commercial depth sensors, e.g., Kinect and
RealSense, many works have been proposed to enhance the depth quality of
the sensors by fusing the photometric cues of the color image [2, 3] or the near
infrared (NIR) image [4, 5]. Although these methods have proven their effective-
ness in photometric shape estimation and have provided promising results, they
rely highly on the sensors and usually require heavy computational time.

On the other hand, deep convolutional neural networks (CNN) have been
broadly used for various computer vision tasks such as image classification [6, 7],
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object detection [8, 9], segmentation [10, 11], and depth estimation [12, 13]. With
its rich learning capability, deep CNN has shown state-of-the-art performances
in many areas and has also made algorithms more practical with fast evaluation
times. Lately, several works have also tried to solve depth or surface normal
estimation using CNN [12, 13]. However, they have largely been focused on scene-
level estimation [13] or context-aware methods [14], which generate rough surface
normals and therefore they cannot generate the fine-scale surface details of the
target object.

The goal of this paper is to propose a practical system that estimates fine-
scale surface normals, not a scene-level structure, from an image captured with
an uncalibrated light source. We solve this shape-from-shading problem by train-
ing a deep CNN on a recent NIR dataset [1]. This dataset consists of 101 objects,
captured by an NIR camera with 9 different viewing directions and 12 lighting
directions. It allows us to train a variety of textures such as fabrics, leaves, and
papers. As shown in [1], the major benefits of using NIR images for estimating
fine-scale geometry are that the albedo variation in NIR images is less prevalent
than in visible band images and undesired ambient indoor lightings are filtered
out. Therefore, this setting can simplify a light model and makes building a
practical system easier. The proposed model for training the mapping between
NIR intensity distributions and normal maps is a generative adversarial net-
work (GAN). We design the objective function of the GAN model to consider
photometric characteristics of the surface geometry by incorporating angular
error and an integrability constraint. Since we train various object images cap-
tured from different lighting directions, our method estimates fine-scale surface
normals without the need for calibrating the lighting direction. We verify that
deep CNN is effective in handling the ill-posed, uncalibrated shape-from-shading
problem without complex heuristic assumptions. Also, we evaluate the general-
ity of our trained model by testing our own datasets, which are captured using
different configurations from that of the training dataset. One example result of
our method is shown in Figure 1.

The major contributions of our work are as follows:

• First work analyzing the relationship between an NIR image and its surface
normal using a deep learning framework.

• Fine-scale surface normal estimation using a single NIR image where the
light direction need not be calibrated.

• Suitable design of an objective function to reconstruct the fine details of a
target object surface.

2 Related Work

Photometric Stereo and Shape from Shading Photometric stereo [15] is
one of the well-studied methods for estimating surface normals. By taking at
least 3 images captured under different lighting directions, photometric stereo
can determine a unique set of surface normals of an object. Also, the usage of
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Fig. 1. Comparison of reconstruction results, left: Input NIR image, middle: Our re-
construction from a single NIR image, right: ground-truth reconstruction using NIR
images captured under 12 different lighting directions.

more images makes the output increase in accuracy since it becomes an over-
determined problem.

Shape from shading is a special case of photometric stereo, which predicts
a shape from a single image. However, it is an ill-posed problem and needs
to exploit many restrictions and constraints [16, 17]. Beginning with numerical
SfS methods [18], many works have shown results based on the Lambertian
BRDF assumption. Tsaiet al. [19] use discrete approximation of surface normals.
Lee and Kuo [20] estimate shape by using a triangular element surface model.
We refer readers to [21] for better understanding regarding comparisons and
evaluations of the classical SfS methods.

Shape from a NIR image has been recently studied in several literatures [4,
1]. They analyze the discriminative characteristics of NIR images and experi-
mentally show the albedo (surface reflectance) simplicity in the NIR wavelength
of various materials. In [4, 5], they propose the shape refinement methods using
the photometric cues in NIR images. They show the high-quality shape recovery
results, however they need an additional depth camera to obtain the results.

Although many conventional photometric approaches can work on NIR im-
ages and the albedo simplicity in the NIR image actually help robust estimation,
estimating the surface normal from a single NIR image still have many limita-
tions for practical uses, such as heavy computation time, heuristic assumptions,
special system configuration, and the calibration of a light direction. To over-
come those limitations, we study the mapping from NIR intensity distributions
to surface normal vectors via a deep CNN framework. We combine a GAN [22]
with the specially designed objective function. Through the adversarial train-
ing process, our network naturally encodes the photometric cues of a scene and
produces fine surface normals.

Data-Driven Shape estimation There have been various studies on estimat-
ing the shape information from images via data-driven approaches. Saxena et
al. [23] estimate depths using a discriminatively trained MRF model with mul-
tiple scales of monocular cues. Hoiem et al. [24] reconstruct rough surface orien-
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tations of a scene by statistically modeling categories of coarse structures (e.g.,
ground, sky and vertical). Ladicky et al. [25] incorporate semantic labels of a
scene to predict better depth outputs.

One of the emerging directions for shape estimation is using deep CNN.
In [26], Fouhey et al.try to discover the right primitives in a scene. In [14],
Wang et al.explore the effectiveness of CNNs for the tasks of surface normal
estimation. Although this work infers the surface normals from a single color
image, it outputs scene-level rough geometries and is not suitable for object-level
detailed surface reconstruction. To estimate the object shape and the material
property, Rematas et al. [27] use the two different CNN architectures which pre-
dict surface normals directly and indirectly. The direct architecture estimates a
reflectance map from an input image while the indirect architecture estimates
a surface orientation map as an intermediate step towards reflectance map esti-
mation. In [28], Liu et al.estimate depths from a single image using a deep CNN
framework by jointly learning the unary and pairwise potentials of the CRF
loss. In [29], Eigen et al.use a multi-scale approach which uses coarse and fine
networks to estimate a better depth map.

Compared to the existing works, we focus on estimating fine-scale surface
normals suing a deep CNN framework, therefore we bear in mind to design a
network to produce photometrically meaningful outputs.

3 Method

3.1 Generative Adversarial Network

Generative adversarial network (GAN) [22] is a framework for training genera-
tive models which consists of two different models; a generative network G for
modeling the data distribution and a discriminative network D for estimating
the state of a network input. For our setup, G tries to generate a realistic sur-
face normal map for the input NIR image and D tries to determine whether the
input surface normal map is from G or from the dataset. Therefore, the gener-
ative network learns to generate more realistic images to fool the latter, while
the discriminative network learns to correctly classify its input as a real image
or a generated image. The two networks are simultaneously trained through a
minimax optimization.

Given an input image of the discriminative network, an initial discriminative
parameter θD is stochastically updated to correctly predict whether the input
comes from a training image I or a generated image F . After that, while keeping
the discriminative parameter θD fixed, a generative parameter θG is trained
to produce the better quality of images, which could be misclassified by the
discriminative network as real images. These procedures are repeated until they
converge. This minimax objective is denoted as:

min
ΘG

max
ΘD

EF∼Ddesire
[logD(I)] + EZ∼Dinput

[log(1−D(F ))] (1)

where Ddesire is the distribution of images that we desired to estimate and Dinput

is that of the input domain. This objective function encourages D to be assigned
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Fig. 2. Our network architecture. The proposed network produces surface normal map
from a single NIR image. The generative model reconstructs surface normal map and
the discriminative network predicts the probability whether the surface normal map
comes from the training data or the generative model.

to the correct label for both real and generated images and make G generate a
realistic output F from an input Z. In our method, both the generative and the
discriminative model are based on convolutional networks. The former takes a
single NIR image as an input and results in a three-dimensional normal image
as an output. The latter classifies an input by using the binary cross-entropy to
make the probability high when an input comes from the training data.

3.2 Deep Shape from Shading

Based on the generative adversarial network explained in Section 3.1, we mod-
ified the GAN model to be suitable for the shape-from-shading problem. Since
shape-from-shading is the ill-posed problem, it is important to incorporate proper
constraints to uniquely determine the right solution. Therefore, we combine an-
gular error and integrability loss, which are shown to be effective in many con-
ventional SfS methods, into the objective function of the generative network.
Also, the existing GAN approaches typically take a random noise vector [22],
pre-encoded vector [30], or an image [31, 32] as the input of their generative net-
works, and each generative model produces the output which lies in the same
domain as its input. In this work, we apply the generative model to produce a
three-dimensional normal map from a NIR image where both data lies in the
different domains. Compared to the conventional SfS methods, we do not need
to calibrate the lighting directions. To the best of our knowledge, our work is
the first application of the adversarial training to estimate fine-scale geometry
from a single NIR image.

Generative Networks We use a fully convolutional network to construct the
generative network. This type of a convolutional model was recently adopted in
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image restoration [33, 34] and was verified to have superior performance in the
task. To keep the image size of the input and output constant, we pad zeros
before the convolution operations. Through our experiments, we found that this
strategy works well in reconstructing the normal map.

Our network architecture is depicted in Figure 2. We feed a 64 x 64 NIR patch
to the generative network as an input. The network consists of 5 convolution
layers (128-256-256-128-3 convolution filters at each of layers), each followed by
ReLU except the last layer. Since the generative network is fully convolutional,
the output of the network has same size as the input NIR image. We have
empirically determined the number and sizes of filters for all networks.

Discriminative Networks Given the output of the generative network, a typ-
ical choice of the objectives function is the averaged L1 or L2 distance between
ground-truth and generated output. However, such a choice has some limitations
to be applied to our problem. L2 distance produces blurry predictions because
it assumes that the errors follow the Gaussian distribution. In L1 distance, this
effect could be diminished, but the estimated images would be the median of
the set of equally likely intensities. We propose to add the discriminative net-
work as a loss function with the distance metric. Recently, [31] proved that
the combination of the distance, gradient and discriminative networks as a loss
function provides the realistic and accurate output. Our discriminative model
has a binary cross-entropy loss to make the high probability when the input is
real images, and vice versa.

3.3 Training

We will explain how we iteratively train the generative model G and the dis-
criminative model D. Let us consider a single NIR image Z ∈ {Z1, Z2, ..., Zj}
from a training dataset and the corresponding ground truth normal map Y ∈
{Y1, Y2, ..., Yj}. The training dataset covers various objects captured from di-
verse lighting directions, and we uniformly sampled the image from the dataset
in terms of the balance of lighting directions.

Basically, we followed the procedure of the paper [30]. Given N paired image
set, we first train D to classify the real image pair (Z, Y ) into the class 1 and the
generated pair (Z,G(Z)) into the class 0. In this step, we fixed the parameters
(θG) of the generative network G to solely update the parameters (θD) of D.
The objective function of the discriminative model is denoted as:

LD(Z, Y ) =

N∑
i=1

Dbce(Yi, 1) +Dbce(G(Zi), 0), (2)

where Dbce is the binary cross-entropy, defined as

Dbce(Yi, C) = −Cilog(Yi) + (1− Ci)log(1− Yi), (3)
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where Ci is the binary class label. We minimize the objective function so that the
network outputs high probability scores for real images Yi and low probability
scores for generated images G(Zi).

After that, we keep the parameters of D fixed and train the generative model
G. Many previous deep learning based image restoration and generation meth-
ods [33, 35] used the mean square error(MSE) loss function to minimize be-
tween the ground-truth images and output images. However, as studied in the
conventional SfS works, estimating accurate surface normal maps requires the
minimization of angular errors and the output normals satisfy the integrability
constraint. Therefore, we modified the objective function of the GAN model to
incorporate those photometric objective functions. By taking the objective func-
tions, we can effectively remove angular error and estimate physically meaningful
surface normals.

Specifically, to evaluate surface normal properly, we defined the objective
function of our generative network as:

LG(Z, Y ) =

N∑
i=1

Dbce(G(Zi), 1) + λlpLp + λangLang + λcurlLcurl. (4)

Following the conventional L1 or L2 loss, the estimated normal map difference
Lp is denoted as:

Lp(Y,G(Z)) = ||Y −G(Z)||pp (5)

where p = 1 or p = 2

To estimate the accuracy of photometric stereo, the angular error is often used
in conventional photometric approaches because it describes more physically
meaningful error than direct normal map difference. To minimize the angular
error, we normalize both the estimated normals (G(Z)) and the ground-truth
normals (Y ), then simply apply the dot product between them as:

Lang(Y,G(Z)) = 1− 〈Y,G(Z)〉 = 1− Y TG(Z)

||Y ||||G(Z)||
(6)

The angular error provides physically meaningful measures, however it av-
eraged entire surface normals. In order to encourage the generative network to
estimate photometrically correct surface normals, we also add the integrability
constraint in local neighbors into the objective function, which is denoted as:

Lcurl = || 5 ×G(Z)〉||. (7)

The integrability constraint enforces that the integral of normal vectors in a local
closed loop must sum up to zero, meaning that angles are returned to the same
height. The integrability constraint prevents a drastic change and guarantees
estimated normals lie on the same surface in a local region.
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Fig. 3. Dataset [1] has various real-world object taken by 12 different lighting direc-
tions and 9 objects of view points. The leftmost is a normal map as the ground-truth
and others are NIR images from different lighting directions. The Variety of lighting
directions makes the same object appear vastly different.

4 Experiment

4.1 Dataset

To apply deep learning framework to our purpose, it is required to have a good
quality dataset with numerous examples for training. However, most existing
datasets are not large enough to train the network and are often inadequate
for our tasks. Recently Choe et al. [1] opened a new NIR benchmark dataset,
including 101 real-world objects such as fabrics, leaves and paper taken at 9
views and 12 lighting directions.

We used a pair of NIR as input and surface normal maps as target for ground
truth. For fine-scale refinement, we augmented NIR images into 12 patches (64×
64) within a single ground truth. For training, we used images from 91 objects
and the remaining objects are for validation and test dataset. Note that we
uniformly sampled validation and test samples according to the object category.
When we trained the network, we normalized NIR images and normal maps to
-1 and 1.

4.2 Training Parameters

We provide parameters used to train our proposed network. The configuration of
the network is depicted in Table 1. Training used batches of size 32. For initializ-
ing weights, we assigned a Gaussian distribution with zero mean and a standard
deviation of 0.02. We trained all experiments using the Adam optimizer [36] with
momentum β1 = 0.5. The learning rate started from 0.0002 and decreased by
a factor of 0.95 every 5000 iterations. For balancing the scale of normalization,
we set a hyperbolic tangent at the end of the generative network. Lastly, we
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Layer
Number
of filters

Filter size
(w×h×ch)

Stride Pad
Batch
norm.

Activation
function

Conv. 1 128 3×3×1 1 1 # ReLU
Conv. 2 256 3×3×128 1 1 # ReLU
Conv. 3 256 3×3×256 1 1 # ReLU
Conv. 4 128 3×3×256 1 1 # ReLU
Conv. 5 3 3×3×128 1 1 × tanh

(a) Details of the Generative network.

Layer
Number
of filters

Filter size
(w×h×ch)

Stride Pad
Batch
norm.

Activation
function

Conv. 1 64 3×3×3 2 0 × L-ReLU
Conv. 2 128 3×3×64 2 0 # L-ReLU
Conv. 3 256 3×3×128 2 0 # L-ReLU
Conv. 4 512 3×3×256 2 0 # L-ReLU
Conv. 5 256 1×1×512 1 0 × sigmoid

(b) Details of the Discriminative network.

Table 1. Network Configuration.

used a 5 × 5 sliding window with 3 pixels overlap to compute the integrabil-
ity. In the optimization procedure, we used a combined loss function including
intensity(Lp), angular(Lang), and integrability constraint(Lcurl). Note that we
did not tune the weighted parameters of each loss functions and set them with
the same weights, λp = λang = λcurl =1.

4.3 Experimental Result

We use Tensorflow1 to implement and train the proposed network. The proposed
network is a fully convolutional network, we apply the entire NIR image at
evaluation. Computation time to estimate a surface normal is about 2 seconds
with a Titan X, meanwhile the conventional shaped from shading method takes
10 minutes with Matlab implementation.

Quantitative Analysis. For the quantitative evaluation, firstly, we validate
each terms of our cost functions. In this experiment, we tested our method using
3rd NIR direction among 12 lighting directions. To evaluate the performance of
our method, we use three metrics; angular error, good pixel ratio and intensity
error. In Table 2, all the quantitative errors are shown. Compared to case of
using only intensity loss, when the angular cost function added, the performance
is improved. This validates that our angular loss measures the physically mean-
ingful error. The integrability term insures the continuity of the local normals.
Although the integrability is satisfied for most of smooth surfaces, it does not

1 https://www.tensorflow.org/
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Angular error(◦) Good pixels(%) Intensity error
(Lower Better) (Higher Better) (Abs Error)

View points Methods Mean Median 10◦ 15◦ 20◦ Mean Median

All views

L1 16.42 16.18 17.10 38.23 72.60 0.14 0.09
L2 16.72 16.68 17.49 36.13 69.80 0.14 0.10
L1 + Lang 15.88 15.81 19.40 37.13 73.08 0.13 0.09
L2 + Lang 15.55 15.30 20.26 49.84 74.45 0.13 0.08
L1 + Lang + Lcurl 16.27 15.89 17.90 38.34 73.70 0.13 0.09
L2 + Lang + Lcurl 16.20 15.54 18.65 41.77 73.04 0.13 0.09

Single view

L1 10.02 9.19 58.17 82.82 93.47 0.08 0.05
L2 8.76 8.37 67.14 90.97 97.44 0.07 0.05
L1 + Lang 7.35 6.74 77.07 93.90 98.59 0.06 0.04
L2 + Lang 7.70 6.82 73.36 91.91 98.36 0.07 0.04
L1 + Lang + Lcurl 10.46 8.92 57.19 80.84 91.27 0.09 0.05
L2 + Lang + Lcurl 7.52 6.43 77.28 92.41 97.59 0.06 0.04

Single view Eigen et al. [13] 77.87 80.78 0.48 0.96 1.52 0.61 0.75
Table 2. Quantitative evaluation. We validate each terms of our cost functions with
various error measures.

Angular error(◦) Good pixels(%) Intensity error
(Lower Better) (Higher Better) (Abs Error)

View points Methods Mean Median 10◦ 15◦ 20◦ Mean Median

All views

L1 4.68 3.96 90.33 97.03 98.87 0.06 0.03
L2 3.34 2.88 96.57 99.40 99.80 0.05 0.02
L1 + Lang 3.47 2.98 96.73 99.42 99.81 0.05 0.02
L2 + Lang 3.61 2.99 95.98 99.09 99.61 0.06 0.02
L1 + Lang + Lcurl 3.95 3.39 94.30 98.83 99.66 0.06 0.02
L2 + Lang + Lcurl 3.83 2.77 95.56 98.25 98.86 0.06 0.02

Single view

L1 4.53 3.70 90.13 96.32 98.43 0.07 0.03
L2 2.91 2.35 97.29 99.27 99.69 0.06 0.03
L1 + Lang 3.06 2.57 97.55 99.51 99.83 0.05 0.02
L2 + Lang 3.61 2.73 96.39 98.82 99.31 0.06 0.02
L1 + Lang + Lcurl 3.62 3.00 95.82 99.00 99.64 0.06 0.02
L2 + Lang + Lcurl 4.23 2.51 94.80 97.21 97.95 0.07 0.02

Single view SfS 5.09 4.14 88.25 97.19 99.27 0.06 0.03
Table 3. Quantitative evaluation on a detail map. In this evaluation, we subtract low-
frequency geometry variations from the results to focus on fine-scale surface geometry.
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guarantee performance improvement in some non-smooth surfaces. In our exper-
iments, L2 + Lang loss function shows the best performance for all views case,
and L1 + Lang achieves the lowest error for center view case. We compare our
results with the conventional SfS method and we verified that our framework
performs competitively. We also compare our method with the deep CNN-based
surface normal estimation method [13]. Although this method estimates the
surface normal, it is designed for reconstructing the scene-level low-frequency
geometries and is not suitable for our purpose. We also measure errors for the
single view which provides the best performance. Since extreme viewing direc-
tions are saturated or under-exposed in some cases, measuring the error of the
single view results in lower errors. We found that estimated normal maps are
distorted in extreme view points (error in low-frequency geometry). To evaluate
the fine-scale (high-frequency) geometry, we define a detail map (M) based on
the measure in [37]. This measure is computed as: M = f(Y )+G(Z)−f(G(Z)),
where function f is smoothing function. Table 3 shows the result.

Qualitative Analysis Figure 4 and Figure 5 show the qualitative results of
our network. Our network is able to estimate fine-scale textures of objects. Com-
paring between L2 and L2 + Lang, we figure out that the angular loss provides
more fine-scale textures than intensity loss. By adding the integrability con-
straint, the result produces a smoother surface. This demonstrates, therefore,
that our network is trained to follow physical properties relevant to SfS.

4.4 Shape Estimation at Arbitrary Lighting Direction

We evaluate our network for the surface estimation with an arbitrary lighting
direction. Without prior knowledge of the lighting directions, SfS becomes a
more challenging problem. As shown in Figure 6, we captured several real-world
objects. The glove has a complex surface geometry. Note that the bumpy surface
and the stitches at the bottom are reconstructed. The cap has a ’C’ letter on it
and the geometry of this is reconstructed in mesh result.

5 Conclusion

In this paper, we have presented a generative adversarial network for estimating
surface normal maps from a single NIR image. As far as we aware, this is the
first work to estimate fine-scale surface geometry from a NIR images using a
deep CNN framework. The proposed network shows competitive performance
without any lighting information. We demonstrated that our photometically-
inspired object function improves the quality of surface normal estimation. We
also applied our network to arbitrary NIR images which are captured under
different configuration with the training dataset and have shown the promising
results.
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Fig. 4. Qualitative results of surface normal estimation using the proposed network.
From left to right: (a) input NIR images, (b) ground-truth normal maps, (c) normal
maps from L2, (d) normal maps from L2 + Lang, (e) error maps of (d).
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Fig. 5. Surface reconstruction results. From left to right: input, L2, L2 + Lang, L2 +
Lang +Lcurl and ground-truth. We compute a depth map from a surface normal map,
then reconstruct a mesh. All three cases are visualized.
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Fig. 6. Surface normal reconstruction results from an arbitrary lighting direction. From
left to right, the columns show the RGB images, NIR images, estimated surface nor-
mals, and reconstructed 3D models.

Limitation and Future Work In our work, we did not take inter-reflections
into account, which might produce inaccurate normals at concave regions. We
also observed convexity/concavity ambiguity at some examples analogous to
conventional SfS methods. Further study should be conducted to resolve this
problem. Our reconstruction might suffer from distortions of low-frequency ge-
ometry as stated in Section 4. This is because we have relatively small amount
of training data and we restrict our goal as estimating fine-scale geometry to
train our network without overfitting to the limited training data. Despite we
aimed reconstructing fine-scale surface geometry, we believe this can be further
combined with various scene-level depth estimation techniques. Moreover, our
network can be extended to estimate a lighting direction as well as surface nor-
mals, which can be a strong prior for conventional SfS methods.
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