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Time-of-flight sensor calibration
for a color and depth camera pair

Jiyoung Jung, Student Member, IEEE, Joon-Young Lee, Student Member, IEEE,
Yekeun Jeong, and In So Kweon, Member, IEEE

Abstract—We present a calibration method of a time-of-flight (ToF) sensor and a color camera pair to align the 3D measurements
with the color image correctly. We have designed a 2.5D pattern board with irregularly placed holes to be accurately detected from
low resolution depth images of a ToF camera as well as from high resolution color images. In order to improve the accuracy of the 3D
measurements of a ToF camera, we propose to perform ray correction and range bias correction. We reset the transformation of the
ToF sensor which transforms the radial distance into the scene depth in Cartesian coordinate through ray correction. Then we capture
a planar scene from different depths to correct the distance error that is shown to be dependent not only on the distance but also on the
pixel location. The range error profiles along the calibrated distance are classified according to their wiggling shapes and each cluster
of profiles with similar shape are separately estimated using a B-spline function. The standard deviation of the remaining random noise
is recorded as an uncertainty information of distance measurements. We show the performance of our calibration method quantitatively
and qualitatively on various datasets, and validate the impact of our method by demonstrating an RGB-D shape refinement application.

Index Terms—Time-of-flight sensor calibration, time-of-flight range error analysis, color-depth camera fusion, Kinect
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1 INTRODUCTION

FOR the past few decades, depth sensors have been
commonly used for navigation in robot application.

Then many researchers have shown promising results
to make use of a depth sensor as an active way for
shape recovery of an object [1]. Unlike 3D reconstruction
methods using images such as stereo, structure-from-
motion, and shape-from-shading, a depth sensor pro-
vides the metric distance of the scene from the sensor,
which can relieve ambiguity and scale problems that the
image based reconstruction methods bear.

Recently, depth sensors have become popular as the
sensors are getting cheaper and smaller. They are widely
used in computer vision community, for any application
that can take advantage of real-time 3D information such
as gesture and action recognition for human-computer
interaction [2], [3], augmented reality and handheld
3D scanning for mobile devices [4], and SLAM for
autonomous vehicle and drone navigation [5]. Depth
measurements are now often acquired with color images
as a format of RGB-D input [6], [7], [8].

A 3D time-of-flight (ToF) camera is a type of depth
sensors which modulates its illumination LEDs and mea-
sures the phase and the amplitude of the returned signal
with its CCD/CMOS imaging sensor at each pixel. The
new generation Kinect is installed with a ToF camera
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which has greater accuracy compared to the previous
Kinect with structured-light [9].

A 3D ToF camera provides an amplitude image which
represents the amplitudes of the returned signals as well
as a 3D point cloud of the scene. One might think that
since a ToF camera provides amplitude images which
look similar with traditional grayscaled images, the
existing calibration methods would work successfully
on estimating the camera parameters of a ToF sensor
as well. However, the methods dedicated to estimate
intrinsic and extrinsic parameters of color cameras [10]
or to extrinsic calibration of a camera with a 2D laser
range finder [11], [12] are not adequate to calibrate a
ToF camera or a sensor fusion system containing a ToF
camera.

The main reason that the traditional calibration meth-
ods do not work well on calibrating a ToF-color camera
pair comes from the characteristics of the ToF sensor.
Unlike a 2D laser range finder, the range measurement
that a typical 3D ToF camera provides is less accurate,
and the amplitude images are blurry and in low res-
olution compared with general color images. Therefore
the process of calibrating a sensor fusion system which
includes a ToF camera has to be designed to overcome
the weakness of the sensor.

In this paper we present an accurate and practical cal-
ibration method for a time-of-flight and a color camera
pair. Since an accurate correspondence acquisition is the
key in homography based calibration, we have designed
a 2.5D pattern board with holes for feature detection on
both color and ToF depth images. The holes are more
robust to be detected in a low resolution image because
the center of a circular pattern is preserved when the
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Fig. 1: System setup and an overview of the proposed calibration method.

image is isotropically blurred.
We calibrate the original per-pixel range measurement

of the ToF camera, which is the radial distance of the
scene, instead of the converted distance in Cartesian
coordinate. We first correct the ray direction of each
pixel because the manufacturer provided range-to-3D
transformation may be incorrect to individual sensors
due to mechanical differences in manufacturing process.
After ray correction, the range error along each ray
is measured by capturing a planar scene (e.g. a wall)
from different depths. The range error for each pixel is
wiggling along the range measurement. To the best of
our knowledge, this is the first report that the wiggling
shape or the amount of bias of the range error profile
depends on its pixel location on the ToF sensor. We
cluster the range error profiles with similar shape and
estimate the range bias of the pixels in each cluster
separately using a B-spline function.

The resulting 3D measurements are ray corrected and
bias eliminated values and they are transferred onto the
color image using the optimized pose to be rendered as
an accurate 3D scene. The flow chart of the system is
illustrated in Fig. 1 with our system setup. We use a
MESA SwissRanger SR4000 and a PointGrey Flea3.

A preliminary version of this work appears in [13].
Ray correction and spatially varying range bias estima-
tion are added to compensate the error of the range mea-
surements of a ToF camera. Quantitative and qualitative
analyses on various experiments are performed to show
the effectiveness of the proposed method. Also, we apply
our calibration result to an RGB-D shape refinement
application and demonstrate a compelling result. The
source code of our software is available online at our
website [14].

1.1 Previous work

One of the most popular calibration methods is [10]. It
is a homography based camera calibration process that
uses 2D metric information of a checkerboard. Based on

this method, an extrinsic calibration of a camera and a 2D
laser range finder with the constraint on depth measure-
ments has been presented [11]. These two methods are
often treated as a baseline of later calibration methods
of various sensor systems which are usually modified to
consider the specific setups and sensor characteristics.

The calibration of a 3D ToF camera has been studied
in a comparatively recent time. Several works have been
focused on calibrating a 3D ToF sensor fusion system.
Fuchs and Hirzinger [15] suggest a distance error model
which compensates distance, amplitude, and latency
related errors. Kim et al. [16] present a depth denoising
algorithm based on parametric noise modeling. Kim et
al. [17] estimate the pose of the sensor by applying [18]
to the ToF amplitude images and use it to model the
systematic error of the sensor, which is to compare the
transformed coordinate with the distance measurement.

The sensor characterizations and the calibration meth-
ods of a ToF camera are examined in metrology com-
munity as well. A number of approaches are presented
to overcome the low quality of the ToF amplitude im-
ages. Lindner and Kolb [19] add a preprocessing step
to the amplitude images to stabilize and speed up the
pattern recognition process. Kahlmann et al. [20] propose
a calibration pattern consisting of filled white circles on
a black background. Kern [21] uses a plane with holes
but their objective is to calibrate a laser scanner which
provides much more accurate depth measurements than
a 3D ToF camera. Since their holes are arranged in a grid,
they have to go through another algorithm to identify the
holes, whereas our pattern has holes spread uniquely so
that identification process becomes very simple. Beder
and Koch [22] incorporate the measured depth values in
addition to the amplitude images of the checkerboard,
which makes a single image suffice to estimate the
focal length and the pose of the sensor. However, since
the lens distortion and distance measurement errors are
neglected, this method yields a lack of precision.

Several metrological literatures focus on the systematic
distance error of a ToF camera. As stated in [23], a
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distance error of a ToF camera. As stated in [23], a
periodic ”wiggling” error which causes the calculated
depth to oscillate around the actual depth arises due
to the deviations of the modulated light signal from a
perfect sine function. In order to calibrate the measured
depth, Lindner and Kolb [19] combine a pixelwise linear
calibration with a global B-splines fit, whereas Schiller et
al. [24] use a polynomial to model the distance deviation.
Schmidt [25] uses a model based approach to predict the
behavior of the non-sinusoidal light signal.

There are studies on other sources of errors of the
ToF camera. Lindner and Kolb [26] deal with intensity
related distance error and Steiger et al. [27] report the
change of distance measurements along with the camera
temperature. For depth denoising as a post processing to
the depth data, Swadzba et al. [28] propose a filtering
pipeline and Reynolds et al. [29] propose to identify
and discard the incorrect depth values using confidence
measures. To reconstruct the depths for discarded pixels,
super-resolution approaches that use depth information
from the surrounding pixels are introduced [30], [31].

There are noticeable works presented in a couple
of years which improve strengths in individual stages
and arrange them into a high performance calibration
solution. Schiller et al. [24] use an analysis-by-synthesis
approach which synthesizes the depth and amplitude
images from GPU and find the camera parameters that
minimizes the error with the input images through non-
linear optimization. Lindner et al. [32] combine intrinsic,
distance, and reflectivity related errors in the similar
framework. They initialize all the parameters with stan-
dard computer vision techniques from OpenCV [33] on
checkerboard images and use averaging for temporal
denoising and bilateral filtering for spatial denoising
as suggested in [34]. The depth errors are corrected
globally with a B-spline function. The performance is
improved by synthesizing depth images with additional
high resolution color cameras. However, they focus less
on the spatial distribution of the depth error and the
acquisition of precise location of features on the images.

Though targeted for a Kinect providing a disparity
map, Herrera et al. [35] correct disparity distortion along
the depth and spatial location, motivated by [36]. They
focus on the fact that the disparity error shows radial
distribution that decays exponentially as the Kinect dis-
parity increases. The pose between the color and depth
sensors is estimated using coplanar constraint rather
than correspondence matching, which may result in
inaccurate transfer of the depth measurements on the
image corners with large radial distortion at the cost of
simplicity of the calibration process.

2 ACCURATE CORRESPONDENCE ACQUISI-
TION

A traditional calibration method of a camera such as [10],
[18], [33] generally locates the correspondences between
a model object with known geometry and its projection

on the image by feature detection. A non-planar 3D
calibration object with very high geometric precision
may be preferred in high-quality photogrammetric cal-
ibration. However, since the object should cover the
complete 3D measurement range of the camera system,
3D calibration objects are difficult to manufacture and
handle. In addition, when calibrating an optical camera
together with a depth camera, the design of such 3D
pattern is often not possible due to the different imaging
modalities of depth and color [23]. Therefore, a planar
2D calibration pattern is preferred which allows a much
easier calibration procedure.

The correspondences between the pattern and the
images are used to model the relationship between
the world and the image coordinates. The calibration
includes pose estimation of the sensor, which computes
the 3D transformation from the world coordinate to the
camera coordinate, and intrinsic parameter estimation,
which models the projection relationship between the
camera coordinate and the image coordinate.

It is essential to acquire a sufficient number of accurate
correspondences between the world and the camera
system in sensor calibration. In case of calibrating a color
camera which provides high quality color images, corner
detection on the images of a black and white checkboard
yields very accurate correspondences of the known 2D
geometry and the image. However, we cannot expect
such an accurate set of correspondences through corner
detection on the amplitude images of a ToF camera
because they are blurry and in low resolution as shown
in Fig. 2(f). A preprocessing to the amplitude images [19]
or manual selection of the feature points may be possible
alternatives, but instead, we propose to use the depth
images of the ToF camera.

2.1 A 2.5D pattern board
The major product of a time-of-flight camera is the 3D
measurement of the scene, not the amplitude images.
The amplitude images are merely offering a hint of the
texture of the scene due to difference in reflectivity of
near-infrared light. Since our goal is to align the depth
information from a ToF camera onto the color image, it
is proper to estimate the necessary camera parameters
using 3D measurements rather than amplitude images.

We have designed a 2.5D pattern board that consists
of features to be easily and correctly detected by the
range measurements of a ToF camera as well as by
color images. The 2.5D pattern board consists of 64 holes
irregularly placed on a plane as shown in Fig. 2(a). The
board is 80×60cm in size and the diameter of a hole is
4cm, which is large enough for the near-infrared rays to
pass through so that the circular pattern is clearly shown
in a 176×144 sized depth image as shown in Fig. 2(b).
The location of the centers of the holes are predefined.
We detect the ellipses in the depth images, find their
centers, and use them as feature points to estimate the
homography using the calibration toolbox for a color
camera in [37].
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Fig. 2: (a) The 2.5D pattern board in a 640 × 480 color
image and (b) in a 176× 144 depth image. (c) The same
depth image rescaled for better feature detection and (d)
radial distortion removed for better homography esti-
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image and (f) in an amplitude image of a ToF camera.
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2.2 Depth image processing

A depth image refers to a grayscaled image of the z-
components of the 3D measurements. Although it is
still possible to use the depth image as it is, the accu-
racy of the estimated homography of each depth image
improves when we rescale, i.e. redefine the intensity
mapping of the depth image and remove the radial
distortion as shown in Fig. 2(c) and (d).

The rescaling process improves the performance of
ellipse detection. We manually locate four corners of
the pattern board in each depth image and calculate the
plane parameter using 3D measurements of those four
corners by SVD. We rescale the depth image as,

I(zt) = exp(−d2plane/τ2) (1)

where zt is the z-component of a 3D measurement at a
pixel and dplane is the distance between the plane and the
3D measurement. τ is a weight to control the intensity
decay, which we have set as τ = 200.

In the process of homography estimation using the
detected features, i.e. the centers of ellipses, we reject
the feature points which do not satisfy the homography
constraint. While this outlier rejection is necessary in
order to disregard erroneous detection of ellipses in the
scene, the correct features near the image boundary tend
to be elliminated along with the outliers if we use radi-
ally distorted depth images. Therefore, we first apply a
homography based calibration to rescaled depth images,
remove radial distortion from the depth images using the
estimated radial distortion parameters, and then apply
a homography based calibration process again to the
rescaled and radially undistorted depth images.

Table 1 shows the effect of the proposed 2.5D pattern
board on correspondence acquisition for ToF camera cali-
bration. To evaluate the accuracy of the feature detection,
we estimate the homography between the model plane

TABLE 1: Average projection error of homography esti-
mation [pixel]

Camera Color ToF

Type of images Color Amplitude Depth
Radially

undistorted
depth

Corner detection 0.479 0.495 - -of a checkerboard [38]
Ellipse detection of

0.832 - 0.226 0.154the 2.5D pattern board
(proposed)

and its images using the detected features and compute
the pixel deviation of the projected 3D points by the
estimated homography. The traditional corner detection
of a black-and-white checkerboard is compared using
the public calibration software [38], which is the imple-
mentation of the state-of-the-art calibration methods [24],
[32]. The checkerboard we used is 80×64cm in size that
consists of squares of 80 millimeters on a side. 63 corner
points are used as correspondences to be fair with 64
holes of the proposed 2.5D pattern board. The average
projection error of the corner detection in Table 1 is the
best result of several trials with some user assistance on
feature selection.

In spite of the mixed depth pixels around the holes
and perspective effects that cause circular patterns to ap-
pear as ellipses, our proposed calibration pattern shows
clear strength on ToF camera calibration. Although the
corner detection of a checkerboard is highly accurate for
high resolution color images, the ellipse detection of the
2.5D pattern board on low resolution depth images with
or without rescaling and radial distortion removal shows
better performance on correspondence acquisition.

For the experiment in Table 1, we used a color camera
with a resolution of 1600× 1200 and a ToF camera with
a resolution of 176× 144.

3 POSE OPTIMIZATION

We detect the centers of ellipses in the depth and color
images and obtain the intrinsic parameters of the ToF
and color cameras as well as the pose of the camera
for each image using the homography based calibration
method [37]. The initial estimates of parameters of the
two cameras are obtained independently. However, since
the ToF camera and the color camera are mounted on
a sensor rig as shown in Fig. 1, we need to design a
function to optimize the poses of both sensors together.

We use an intrinsic model as [10], which consists of a
pinhole model with radial distortion correction. A 3D
point xt = [xt, yt, zt]

T in the ToF camera coordinate
is first normalized by xn = [xn, yn]T = [xt/zt, yt/zt]

T .
Radial distortion is modeled as:

xk = (1 + k1r
2 + k2r

4)xn (2)

where r2 = x2n+y2n and kt = [k1, k2] is a vector containing
the distortion coefficients. The image coordinate pt =
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[ut, vt]
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where ft = [ftx, fty] is the focal length and p0t = [u0t, v0t]
is the principal point. The same model applies to the
color camera.

In the following optimization, the intrinsic parameters
of both cameras remain fixed as the initial estimates. The
pose of the ToF camera of each image and the relative
pose of the color camera with respect to the ToF camera
are optimized.

Let the projection of a 3D point X in the world
coordinate onto the i-th ToF depth image be pti and onto
the i-th color image be pci:

pti = Kt[Rti tti]X (4)

pci = Kc[Rt2c tt2c]

[
Rti tti
0 1

]
X (5)

where Kt and Kc are the intrinsic camera matrices de-
fined as in Eq. (3) of the ToF camera and the color camera
respectively. Radial distortion of both cameras are mod-
eled as Eq. (2). [Rti tti] is the i-th ToF camera pose with
respect to the world coordinate and [Rt2c tt2c] is the
color camera pose with respect to the ToF camera, which
are optimized through the following error minimization:

min
∑

i

wt

∥∥pti − p̃ti

∥∥2 + wc

∥∥pci − p̃ci

∥∥2 (6)

where p̃ti and p̃ci are the feature points extracted in
the i-th ToF depth image and the i-th color image
respectively.

We use Levenberg-Marquardt optimization to mini-
mize Eq. (6). wt and wc are the weights to balance the
projection errors in depth and color images. The weights
are determined according to the ratio of the resolution
of a color image Ωc to that of a depth image Ωt. We
set wc = 1 and wt =

√
Ωc/Ωt, which means that 3.5-

pixel error in a color image is considered same as 1-
pixel error in a depth image when Ωt = 176 × 144 and
Ωc = 640× 480. Note that the weights should reflect the
actual overlapping portion of the images when the field
of views of two cameras are appreciably different.

4 DEPTH CORRECTION

There are a number of error sources in a ToF camera
which influence the accuracy of its 3D measurements.
A comprehensive depth correction has to be performed
to obtain accurate depth data from the sensor. Since the
ToF camera measures the time of flight along the light
path, the error should be corrected with respect to the
range measurement, not in Cartesian coordinates [23].
Moreover, the correct range-to-3D transformation is also
important because the 3D measurements after the con-
version is the depth data which we actually use.

In Section 4.1, we correct the range-to-3D transforma-
tion for each pixel so that its ray direction coincides with
the estimated intrinsic parameters. The estimation of the
range error and its complex behavior are described in
Section 4.2. The analysis on the distribution of the range
bias error along with the range measurement and the
pixel location followed by an effective error correction
are described in Section 4.3.

4.1 Ray correction
A ToF camera provides a 3D measurement [xt, yt, zt]

T

of the scene but it is actually a transformed value of
the range measurement along the certain ray direction
for each pixel, represented in a 3D Cartesian coordinate.
The transformation is predefined by the manufacturer
and the ray direction [xt/zt, yt/zt]

T at each pixel is
fixed when the modulation frequency of the ToF camera
remain unchanged during the capture. However, this
range-to-3D transformation may be inaccurate to indi-
vidual sensors due to mechanical differences arisen from
the manufacturing process. Therefore we first reset the
transformation to be in accord with the intrinsic param-
eters estimated by the homography based calibration,
before correcting depth errors included in the range
measurement.

Given an image coordinate [ut, vt]
T , the ray direction

xn = [xn, yn]T at the pixel is defined by the intrinsic
parameters of the camera Πt = {ft,p0t,kt} by Eq. (2)
and Eq. (3). Since the 3D space defined by the manufac-
turer provided range-to-3D transformation tends to be
inaccurate to individual sensors, we propose to reset the
transformation to obtain the correct 3D measurements.

Let a range measurement be R and we model the
range-to-3D transformation as,

zt = s(R+Rb)

xt = xnzt = xns(R+Rb)

yt = ynzt = yns(R+Rb) (7)

where Rb is a range bias, and s is a scalar to normalize
each component, i.e. s = 1/

√
x2n + y2n + 1.

Since there are no unknowns left in Eq. (7) except
Rb after the homography based calibration, the ray
corrected 3D measurements are obtained by simply ap-
plying Eq. (7) to the raw range measurements R of a
ToF camera by setting Rb = 0, assuming Rb is relatively
small.

4.2 Range bias estimation
To estimate Rb for better accuracy, we use the range data
of the 2.5D pattern board. We identify the range mea-
surements fallen on the plane (not the holes) using the
plane parameter estimated in Section 2.2. We select the
pixels having manufacturer provided 3D measurements
within a small distance threshold from the plane (e.g.
10mm). Since we know the optimzed pose of the camera,
we can calculate the optimized plane parameter Nti as,
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Fig. 3: The distribution of Rb according to range mea-
surement (left) and distance of the pixel location from
the image center (right).

plane parameter estimated in Section 2.2. We select the
pixels having manufacturer provided 3D measurements
within a small distance threshold from the plane (e.g.
10mm). Since we know the optimzed pose of the camera,
we can calculate the optimized plane parameter Nti as,

Nti =

[
Rti tti
0T 1

]−T
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Without loss of generality, we assume that the plane
parameter of the 2.5D pattern board in the world co-
ordinate is [0, 0, 1, 0]T . Then, the ray corrected 3D mea-
surement [xt, yt, zt]

T should satisfy the plane equation:

[xt, yt, zt, 1]Nti = 0 (9)

Using Eq. (7), Eq. (8), and Eq. (9), we estimate Rb

for each range measurement of the plane. However, as
shown in Fig. 3, it is difficult to find any connection
of Rb with the range measurement or with the pixel
location of the range measurement on the image plane.
The range bias varies in both domain and it is impossible
to represent the range bias using either one of those
variables.

To identify the relationship of the range bias with
both the range measurement and the pixel location of
the measurement on the image more clearly, we capture
a planar scene at different distances and estimate the
depth error along the corrected ray direction in the next
section.

4.3 Range bias correction
The range measurements that a time-of-flight sensor pro-
vides suffer from random noise and systematic bias. The
most crucial error source of a ToF sensor is formed by a
systematic wiggling error altering the measured distance
by shifting the distance information significantly toward
or away from the sensor [32]. The systematic wiggling
error arises in the process of distance calculation from
the phase difference of the reference signal and the re-
turned signal of a ToF sensor. Due to hardware and cost
limitations, the theoretical assumption of a sinusoidal
signal shape is generally not suitable in reality. As a
result, range errors appear as shown in Fig. 4. Instead

TABLE 2: RMS error before and after range bias correc-
tion [mm]

Before After
correction correction

All pixels corrected together 6.18 6.12with a single B-spline function [32]
Each cluster corrected 6.18 3.80separately (proposed)

Cluster 1 (Fig. 4(b)) 3.84 2.92
Cluster 2 (Fig. 4(c)) 10.6 5.61
Cluster 3 (Fig. 4(d)) 24.2 8.95

Cluster 4 4.87 3.72
Cluster 5 6.28 4.14

of modeling the range bias of all the measurements
using a single B-spline function, we focus on the spatial
distribution of the range error on the image plane as
well.

Range bias correction is important in enhancing the
quality of the 3D measurements of a ToF camera because
not only it reduces the error in range measurement but
also it removes the offset bias from the error to make
the error distribution more like a zero-mean Gaussian.
The bias corrected depth becomes more suitable to depth
related applications such as [3], [8].

To estimate the error of the range measurement, we
have captured a wall at different distances, making sure
that the wall is captured more than 30 times at each
distance. We have averaged those range measurements
to obtain a reliable representative frame of the wall at
each distance. We model the plane using SVD because a
large portion of the 3D measurement after ray correction
is already highly accurate. We estimate the range error
as the distance between the 3D measurement and the
fitted plane along the ray.

Fig. 4 shows the range error along the measurement
of the different pixels on the image. The figure in the
middle of the column (a) shows the range error profiles
of all the pixels. The error is wiggling along the range
measurement, showing a wide range of variance. Lind-
ner et al. [32] model this error using a single B-spline
function. Instead, we have applied k-means clustering
to the error data to classify them according to shape of
fluctuation. As a result, the wiggling errors are success-
fully divided into a number of clusters, each of which
having a similar shape to be modeled by a single B-
spline function. The measurements in each cluster are
radially distributed on the image plane, as shown in the
top row of Fig. 4. The columns (b-d) show the spatial
distribution of the three out of five (k = 5) clusters of
pixels and their corresponding range error profiles with
the estimated B-spline functions.

The RMS errors before and after bias correction are
shown in Table 2. It is shown to be much more effective
when range error is corrected each cluster indepen-
dently than when corrected as a whole. The average
RMS error of spatially varying range bias correction is
3.80mm, which is much less than that of a single function

Fig. 3: The distribution of Rb according to range mea-
surement (left) and distance of the pixel location from
the image center (right).
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Without loss of generality, we assume that the plane
parameter of the 2.5D pattern board in the world co-
ordinate is [0, 0, 1, 0]T . Then, the ray corrected 3D mea-
surement [xt, yt, zt]

T should satisfy the plane equation:

[xt, yt, zt, 1]Nti = 0 (9)

Using Eq. (7), Eq. (8), and Eq. (9), we estimate Rb

for each range measurement of the plane. However, as
shown in Fig. 3, it is difficult to find any connection of Rb

with the range measurement or with the pixel location
of the range measurement on the image plane. The
range bias varies in both domains and it is impossible
to represent the range bias using either one of those
variables.

To identify the relationship of the range bias with
both the range measurement and the pixel location of
the measurement on the image more clearly, we capture
a planar scene at different distances and estimate the
depth error along the corrected ray direction in the next
section.

4.3 Range bias correction

The range measurements that a time-of-flight sensor pro-
vides suffer from random noise and systematic bias. The
most crucial error source of a ToF sensor is formed by a
systematic wiggling error altering the measured distance
by shifting the distance information significantly toward
or away from the sensor [32]. The systematic wiggling
error arises in the process of distance calculation from
the phase difference of the reference signal and the re-
turned signal of a ToF sensor. Due to hardware and cost
limitations, the theoretical assumption of a sinusoidal
signal shape is generally not suitable in reality. As a
result, range errors appear as shown in Fig. 4. Instead
of modeling the range bias of all the measurements
using a single B-spline function, we focus on the spatial
distribution of the range error on the image plane as
well.

TABLE 2: RMS error before and after range bias correc-
tion [mm]

Before After
correction correction

All pixels corrected together 6.18 6.12with a single B-spline function [32]
Each cluster corrected 6.18 3.80separately (proposed)

Cluster 1 (Fig. 4(b)) 3.84 2.92
Cluster 2 (Fig. 4(c)) 10.6 5.61
Cluster 3 (Fig. 4(d)) 24.2 8.95

Cluster 4 4.87 3.72
Cluster 5 6.28 4.14

Range bias correction is important in enhancing the
quality of the 3D measurements of a ToF camera because
not only it reduces the error in range measurement but
also it removes the offset bias from the error to make
the error distribution more like a zero-mean Gaussian.
The bias corrected depth becomes more suitable to depth
related applications such as [3], [8].

To estimate the error of the range measurement, we
have captured a wall at different distances, making sure
that the wall is captured more than 30 times at each
distance. We have averaged those range measurements
to obtain a reliable representative frame of the wall at
each distance. We model the plane using SVD because a
large portion of the 3D measurement after ray correction
is already highly accurate. We estimate the range error
as the distance between the 3D measurement and the
fitted plane along the ray.

Fig. 4 shows the range error along the measurement
of different pixels on the image. The figure in the middle
of the column (a) shows the range error profiles of all
the pixels. The error is wiggling along the range mea-
surement, showing a wide range of variance. Lindner et
al. [32] model this error using a single B-spline function.
Instead, we have applied k-means clustering to the error
data to classify them according to shape of fluctuation.
As a result, the wiggling errors are successfully divided
into a number of clusters, each of which having a similar
shape to be modeled by a single B-spline function. The
measurements in each cluster are radially distributed on
the image plane, as shown in the top row of Fig. 4.
The columns (b-d) show the spatial distribution of the
three out of five (k = 5) clusters of pixels and their
corresponding range error profiles with the estimated B-
spline functions.

The RMS errors before and after bias correction are
shown in Table 2. It is shown to be much more effective
when range error is corrected each cluster indepen-
dently than when corrected as a whole. The average
RMS error of spatially varying range bias correction is
3.80mm, which is much less than that of a single function
correction. Note that the pixels on the image corners
(Cluster 3) show large error compensation result due to
range bias correction. The range bias clearly has a spatial
distribution and it is more effective when corrected by
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Fig. 4: (Top) Spatial distribution of the measurements. (Middle row) Range errors and the estimated B-spline
functions. (Bottom) Range error after correction. (a) Range bias correction of all the measurement using a single
B-spline function. (b-d) Three clusters (Cluster 1,2,3 in Table 2) of the measurements showing similar error profiles
and their corrections.

correction. Note that the pixels on the image corners
(Cluster 3) show large error compensation result due to
range bias correction. The range bias clearly has a spatial
distribution and it is more effective when corrected by
using different B-spline functions.

5 EXPERIMENTS

We have performed various experiments to validate the
proposed calibration method. In Section 5.1, quantitative
analyses are presented to show that each stage of the
proposed framework is effective. To provide a clue on
the number of necessary images to obtain a certain level
of performance, we show performance differences using
different number of images of the pattern board and the
planar scene in calibration. The angular error between
the captured faces of a cuboid is analyzed to show
the ray correction is effective on alleviating the depth
distortion due to incorrect range-to-3D transformation.
The planar scene comparison test show that the different
range bias correction for different pixels is necessary,
especially for the corner pixels.

The performance comparison with the previous
method is described in Section 5.2 and the 3D rendering
results of the real scenes are presented in Section 5.3.

We used two sets of color and depth cameras for the
experiments. Each set of cameras is mounted together

to have a fixed relative pose as shown in Fig. 1. One
setting consists of a MESA SwissRanger SR4000 which
provides range data of 176 × 144 in resolution and a
PointGrey Flea3 which provides a color image of 640×
480 in resolution. Another set consists of a different ToF
camera of the same manufacturer and a color camera
with a resolution of 1600× 1200.

The two different ToF cameras have presented the
same problem of incorrect interpretation of its ray di-
rection and the similar error distribution on its sensor
plane, as a general characteristic of the sensor.

We implemented our algorithm in Matlab. The code
has been released for the research community. We pro-
vide the exact coordinates of the holes on the 2.5D
pattern board so that any one can make one of his own.

The calibration with 18 images of the pattern and 21
images of the planar scene takes 157 seconds (including
129 seconds of depth correction) on a 3.4 GHz computer,
but we can expedite the process to 137 seconds (includ-
ing 122 seconds of depth correction) by using 9 images
of the pattern and 6 planar scenes without significant
performance degradation.

5.1 Quantitative analysis
Table 3 and Table 4 show the actual effectiveness of the
ray correction and range bias correction. When 18, 9 and

Fig. 4: (Top) Spatial distribution of the measurements. (Middle row) Range errors and the estimated B-spline
functions. (Bottom) Range error after correction. (a) Range bias correction of all the measurement using a single
B-spline function. (b-d) Three clusters (Cluster 1,2,3 in Table 2) of the measurements showing similar error profiles
and their corrections.

using different B-spline functions.

5 EXPERIMENTS

We have performed various experiments to validate the
proposed calibration method. In Section 5.1, quantitative
analyses are presented to show that each stage of the
proposed framework is effective. To provide a clue on
the number of necessary images to obtain a certain level
of performance, we show performance differences using
different number of images of the pattern board and the
planar scene in calibration. The angular error between
the captured faces of a cuboid is analyzed to show
the ray correction is effective on alleviating the depth
distortion due to incorrect range-to-3D transformation.
The planar scene comparison test show that the different
range bias correction for different pixels is necessary,
especially for the corner pixels.

The performance comparison with the previous
method is described in Section 5.2 and the 3D rendering
results of the real scenes are presented in Section 5.3.

We used two sets of color and depth cameras for the
experiments. Each set of cameras is mounted together
to have a fixed relative pose as shown in Fig. 1. One
setting consists of a MESA SwissRanger SR4000 which
provides range data of 176 × 144 in resolution and a
PointGrey Flea3 which provides a color image of 640×

480 in resolution. Another set consists of a different ToF
camera of the same manufacturer and a color camera
with a resolution of 1600× 1200.

The two different ToF cameras have presented the
same problem of incorrect interpretation of its ray di-
rection and the similar error distribution on its sensor
plane, as a general characteristic of the sensor.

We implemented our algorithm in Matlab. The code
has been released for the research community. We pro-
vide the exact coordinates of the holes on the 2.5D
pattern board so that any one can make one of his own.

The calibration with 18 images of the pattern and 21
images of the planar scene takes 157 seconds (including
129 seconds of depth correction) on a 3.4 GHz computer,
but we can expedite the process to 137 seconds (includ-
ing 122 seconds of depth correction) by using 9 images
of the pattern and 6 planar scenes without significant
performance degradation.

5.1 Quantitative analysis

Table 3 and Table 4 show the actual effectiveness of the
ray correction and range bias correction. When 18, 9 and
5 images are used in calibration, we use another set of
18 images to validate the calibration performance. For
evaluation, we calculate the camera poses of 18 color
and depth images of the validation set. Then, using
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TABLE 3: Average projection errors on color and depth
images [pixel] and average range measurement errors of
the pattern plane [mm]

Number of images 18 9 5used in calibration
Projection Color images 0.307 0.398 0.781

error [pixel] Depth images 0.291 0.308 0.313
Manufacturer 12.727 12.727 12.727Range provided

error Ray corrected 6.131 6.134 6.150
[mm] Ray and bias 5.731 5.757 5.771corrected

TABLE 4: Percentage of the range measurements having
errors smaller than 5 / 10 / 20mm [%]

No. of imgs 18 9 5used in calib.
Manufacturer 26.8/51.2/77.1 26.8/51.2/77.1 26.8/51.2/77.1provided

Ray 48.9/81.1/98.9 49.7/80.7/98.7 49.6/80.6/98.7corrected
Ray and bias 52.2/83.3/99.1 52.8/82.8/98.9 52.6/82.7/98.9corrected

the intrinsic parameters, the optimized pose between
two cameras, the corrected range-to-3D transformation,
and range error profiles obtained by images of the
calibration set and the range data of the planar scene,
we calculate the projection errors and the depth errors
on validation set. The depth errors are calculated as
explained in Section 4.2, as the distance between the
range measurements of the pattern board (except for the
holes) and the intersection between per-pixel ray and the
estimated plane using the pose of each image (Eq. (8)).

When 18 images are used in calibration, the aver-
age projection errors on color and depth images after
the pose optimization are very small (0.307 and 0.291
respectively). However, the manufacturer provided 3D
measurements still show a large misalignment in the
rendering result shown in Fig. 10 (b) because its ray
direction does not coincide with the estimated intrinsic
parameters. The average depth error of the manufacturer
provided 3D measurements is not affected by the num-
ber of images in calibration set because the intrinsic pa-
rameters and the optimized pose between two cameras
obtained from the calibration set do not affect the depth
error. Given the range measurement, the depth error is
determined by the range-to-3D transformation, the range
bias elimination and the estimated pose of the image in
the validation set.

The correction of ray direction reduces the average
depth error in half. The additional correction of the range
bias reduces average depth error by 0.4mm. The amount
of reduction may seem small, but it is shown that the
percentage of the range measurements having a very
small depth error (less than 5mm) has increased from
48.9% to 52.2% in Table 4. The range bias correction
eliminates a few large bias errors, which barely affects

TABLE 5: Performance difference of bias correction using
different number of planar scene range data. Average
error of range measurements [mm] and the percentage
of the range measurements having errors smaller than 5
/ 10 / 20mm [%]

Number of planar scenes 21 16 11 6
Average range error [mm] 5.757 5.775 5.783 5.786
Less than 5mm error [%] 52.8 52.6 52.6 52.6
Less than 10mm error [%] 82.8 82.7 82.6 82.6
Less than 20mm error [%] 98.9 98.9 98.9 98.9
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5 images are used in calibration, we use another set of
18 images to validate the calibration performance. For
evaluation, we calculate the camera poses of 18 color
and depth images of the validation set. Then, using the
intrinsic parameters, the optimized pose between two
cameras, the corrected range-to-3D transformation, and
range error profiles obtained by images of the calibration
set and the range data of the planar scene, we calculate
the projection errors and the depth errors on validation
set. The depth errors are calculated as explained in Sec.
4.2, as the distance between the range measurements
of the pattern board (except for the holes) and the
intersection between per-pixel ray and the estimated
plane parameter using the pose of each image (Eq. (8)).

When 18 images are used in calibration, the aver-
age projection errors on color and depth images after
the pose optimization are very small (0.307 and 0.291
respectively). However, the manufacturer provided 3D
measurements still show a large misalignment in the
rendering result shown in Fig. 10 (b) because its ray
direction does not coincide with the estimated intrinsic
parameters. The average depth error of the manufacturer
provided 3D measurements is not affected by the num-
ber of images in calibration set because the intrinsic pa-
rameters and the optimized pose between two cameras
obtained from the calibration set do not affect the depth
error. Given the range measurement, the depth error is
determined by the range-to-3D transformation, the range
bias elimination and the estimated pose of the image in
the validation set.

The correction of ray direction reduces the average
depth error in half. The additional correction of the range
bias reduces average depth error by 0.4mm. The amount
of reduction may seem small, but it is shown that the

TABLE 5: Performance difference of bias correction using
different number of planar scene range data. Average
error of range measurements [mm] and the percentage
of the range measurements having errors smaller than 5
/ 10 / 20mm [%]

Number of planar scenes 21 16 11 6
Average range error [mm] 5.757 5.775 5.783 5.786
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Fig. 5: Range error profiles obtained from 6 planar
scenes. The lines show range bias estimation using a pla-
nar scene captured from 6 (black), 11 (blue), 16 (green),
and 21 different distances (magenta).

percentage of the range measurements having a very
small depth error (less than 5mm) has increased from
48.9% to 52.2% in Table 4. The range bias correction
eliminates a few large bias errors, which barely affects
the average error but makes the measurements on the
image boundary more reliable and eventually result in a
larger field of view providing accurate range measure-
ments. As a result, 99% of all the range measurements
are guaranteed to be in 20mm error using the proposed
calibration method.

5.1.1 Analysis on range bias correction
Table 5 shows the performance difference of the range
bias correction using the range data of a planar scene at
21, 16, 11 and 6 different distances. For all the cases, the
nearest range measurement is 0.7m, and the farthest is
4.4m. The performance is quite similar regardless of the
number of the scenes, as long as the capturing positions
are regularly placed along the range. Fig. 5 shows the
depth error of the Cluster 2 and Cluster 3 in Fig. 4 when 6
planar scenes are used instead of 21. The estimated range
bias (in black) is practically the same as the ones using
11 (in blue), 16 (in green) and 21 scenes (in magenta).

It is clear that the systematic range bias can be reduced
if its spatial distribution is considered in estimation.
The range bias correction can be left as optional, since
most of the pixels near the image center are already
highly accurate without bias elimination. However, the
additional range bias correction using a planar scene at
several distances can improve the accuracy of the pixels
at the image corners substantially. It can be a strong

Fig. 5: Range error profiles obtained from 6 planar
scenes. The lines show range bias estimation using a pla-
nar scene captured from 6 (black), 11 (blue), 16 (green),
and 21 different distances (magenta).

the average error but makes the measurements on the
image corners more reliable and eventually results in a
larger field of view providing accurate range measure-
ments. As a result, 99% of all the range measurements
are guaranteed to be in 20mm error using the proposed
calibration method.

5.1.1 Analysis on range bias correction

Table 5 shows the performance difference of the range
bias correction using the range data of a planar scene at
21, 16, 11 and 6 different distances. For all the cases, the
nearest range measurement is 0.7m, and the farthest is
4.4m. The performance is quite similar regardless of the
number of the scenes, as long as the capturing positions
are regularly placed along the range. Fig. 5 shows the
depth error of the Cluster 2 and Cluster 3 in Fig. 4 when 6
planar scenes are used instead of 21. The estimated range
bias (in black) is practically the same as the ones using
11 (in blue), 16 (in green) and 21 scenes (in magenta).

It is clear that the systematic range bias can be reduced
if its spatial distribution is considered in estimation.
The range bias correction can be left as optional, since
most of the pixels near the image center are already
highly accurate without bias elimination. However, the
additional range bias correction using a planar scene at
several distances can improve the accuracy of the pixels
at the image corners substantially. It can be a strong
advantage of the proposed calibration considering that
the field of view of a ToF camera is very small.
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Fig. 6: A color image of the cuboid and a manually
constructed mask for its three faces.

TABLE 6: Angular error between reconstructed planes
in degrees. ∠ab represents the angle between the fitted
planes of face a and b.

90◦ − ∠12 90◦ − ∠23 90◦ − ∠31

Manufacturer provided 1.64◦ 5.98◦ −0.78◦
Ray corrected 1.49◦ 3.68◦ −0.32◦

Ray and bias corrected 1.16◦ 3.54◦ −0.19◦

advantage of the proposed calibration considering that
the field of view of a ToF camera is very small.

5.1.2 Real cuboid analysis
We evaluated the performance of calibration by recon-
structing a cuboid whose faces are known to be at 90
degrees from each other. Fig. 6 shows a color image of
a cuboid and its mask. We manually divided the three
faces of the cuboid based on its appearance in the color
image.

We constructed 3D mesh from the manufacturer pro-
vided, ray corrected, ray and bias corrected 3D measure-
ments and obtained depth maps by using OpenGL from
the viewpoint of the color camera using the optimized
pose between the ToF and the color camera. The 3D
points that belong to each face are selected using the
mask in Fig. 6. A planes is fitted to each face using
RANSAC and SVD. Table 6 shows the angle between
each pair of adjacent faces of three reconstruction. The
result show that the stage of ray correction notably
improves the metric depth accuracy by alleviating the
depth distortion.

5.1.3 Planar scene evaluation
The ray correction makes the estimated intrinsic and ex-
trinsic parameters meaningful to represent a ToF camera
as well as to a color camera. It is shown in rendering
results that ray correction reduces projection errors and
aligns the range measurements with the color image
correctly. The range bias correction mainly corrects the
range measurements on the image corners. We have
captured planar scenes that cover the entire image to
visualize the accuracy enhancement.

We have also captured an uneven gray wall as shown
in Fig. 8(a). For qualitative comparison, the wall is
reconstructed using structured-light method [39], which
is known to be highly accurate. The reconstructed mesh

TABLE 7: Calibration result of projection error (in pixel)
and depth error (in millimeter)

Color ToF Depth Depth
(All) (Corners)

Schiller et al. [24] 0.313 2.330 7.45 16.6(Automatic feature detection)
Schiller et al. [24] 0.230 0.237 7.51 16.7(Some manual feature selection)

Our method 0.379 0.207 7.18 13.7

(a) All pixels (b) Corner pixels

Fig. 9: Average depth error along the calibrated distance
using different depth correction methods

using manufacturer provided transformation, ray correc-
tion, and ray and bias correction are compared with the
reconstructed point cloud using structured light method
by iterative closest point (ICP) [40]. Green regions indi-
cate the distance between the point cloud and the mesh
is less than 10mm. Yellow and blue regions indicate the
absolute distance is between 10mm and 20mm.

5.2 Performance comparison

We compared the performance of our calibration method
with Schiller et al. [24] using the public software [38].
Since Schiller et al. [24] requires checkerboard images,
we captured 41 images of the checkerboard described
in Section 2.2 within the distance range from 0.9m to
2.9m. When corner detection was performed automat-
ically, there were several incorrect localization of the
corners in ToF amplitude images because the corners
were too blurry as the cameras got further away from
the board. As a result, the average projection error on the
ToF amplitude images became very large, as shown in
Table 7. With some user assistance on feature selection,
we achieved the best result.

For comparison, we used the proposed 2.5D pattern
board and depth images for correspondence acquisition
for the ToF camera, as described in Section 2. 27 images
captured in the same distance range were used. The
projection error in ToF depth images using the proposed
method is shown to be smaller.

Note that our method is effective in reducing the depth
error of the corner pixels. The performance of the depth
correction along the calibrated distance is compared in
Fig. 9.

Fig. 6: A color image of the cuboid and a manually
constructed mask for its three faces.

TABLE 6: Angular error between reconstructed planes
in degrees. ∠ab represents the angle between the fitted
planes of face a and b.

90◦ − ∠12 90◦ − ∠23 90◦ − ∠31

Manufacturer provided 1.64◦ 5.98◦ −0.78◦
Ray corrected 1.49◦ 3.68◦ −0.32◦

Ray and bias corrected 1.16◦ 3.54◦ −0.19◦

5.1.2 Real cuboid analysis

We evaluated the performance of calibration by recon-
structing a cuboid whose faces are known to be at 90
degrees from each other. Fig. 6 shows a color image of
a cuboid and its mask. We manually divided the three
faces of the cuboid based on its appearance in the color
image.

We constructed 3D mesh from the manufacturer pro-
vided, ray corrected, ray and bias corrected 3D measure-
ments and obtained depth maps by using OpenGL from
the viewpoint of the color camera using the optimized
pose between the ToF and the color camera. The 3D
points that belong to each face are selected using the
mask in Fig. 6. A plane is fitted to each face using
RANSAC and SVD. Table 6 shows the angle between
each pair of adjacent faces of three reconstruction. The
results show that the stage of ray correction notably
improves the metric depth accuracy by alleviating the
depth distortion.

5.1.3 Planar scene evaluation

The ray correction makes the estimated intrinsic and ex-
trinsic parameters meaningful to represent a ToF camera
as well as to a color camera. It is shown in rendering
results that ray correction reduces projection errors and
aligns the range measurements with the color image
correctly. The range bias correction mainly corrects the
range measurements on the image corners. We have
captured planar scenes that cover the entire image to
visualize the accuracy enhancement in Fig. 7.

We have also captured an uneven gray wall as shown
in Fig. 8(a). For qualitative comparison, the wall is re-
constructed using a structured-light method [39], which
is known to be highly accurate. The reconstructed mesh

TABLE 7: Calibration result of projection error (in pixel)
and depth error (in millimeter)

Color ToF Depth Depth
(All) (Corners)

Schiller et al. [24] 0.313 2.330 7.45 16.6(Automatic feature detection)
Schiller et al. [24] 0.230 0.237 7.51 16.7(Some manual feature selection)

Our method 0.379 0.207 7.18 13.7
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structing a cuboid whose faces are known to be at 90
degrees from each other. Fig. 6 shows a color image of
a cuboid and its mask. We manually divided the three
faces of the cuboid based on its appearance in the color
image.

We constructed 3D mesh from the manufacturer pro-
vided, ray corrected, ray and bias corrected 3D measure-
ments and obtained depth maps by using OpenGL from
the viewpoint of the color camera using the optimized
pose between the ToF and the color camera. The 3D
points that belong to each face are selected using the
mask in Fig. 6. A planes is fitted to each face using
RANSAC and SVD. Table 6 shows the angle between
each pair of adjacent faces of three reconstruction. The
result show that the stage of ray correction notably
improves the metric depth accuracy by alleviating the
depth distortion.

5.1.3 Planar scene evaluation
The ray correction makes the estimated intrinsic and ex-
trinsic parameters meaningful to represent a ToF camera
as well as to a color camera. It is shown in rendering
results that ray correction reduces projection errors and
aligns the range measurements with the color image
correctly. The range bias correction mainly corrects the
range measurements on the image corners. We have
captured planar scenes that cover the entire image to
visualize the accuracy enhancement.

We have also captured an uneven gray wall as shown
in Fig. 8(a). For qualitative comparison, the wall is
reconstructed using structured-light method [39], which
is known to be highly accurate. The reconstructed mesh
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Color ToF Depth Depth
(All) (Corners)

Schiller et al. [24] 0.313 2.330 7.45 16.6(Automatic feature detection)
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using manufacturer provided transformation, ray correc-
tion, and ray and bias correction are compared with the
reconstructed point cloud using structured light method
by iterative closest point (ICP) [40]. Green regions indi-
cate the distance between the point cloud and the mesh
is less than 10mm. Yellow and blue regions indicate the
absolute distance is between 10mm and 20mm.

5.2 Performance comparison

We compared the performance of our calibration method
with Schiller et al. [24] using the public software [38].
Since Schiller et al. [24] requires checkerboard images,
we captured 41 images of the checkerboard described
in Section 2.2 within the distance range from 0.9m to
2.9m. When corner detection was performed automat-
ically, there were several incorrect localization of the
corners in ToF amplitude images because the corners
were too blurry as the cameras got further away from
the board. As a result, the average projection error on the
ToF amplitude images became very large, as shown in
Table 7. With some user assistance on feature selection,
we achieved the best result.

For comparison, we used the proposed 2.5D pattern
board and depth images for correspondence acquisition
for the ToF camera, as described in Section 2. 27 images
captured in the same distance range were used. The
projection error in ToF depth images using the proposed
method is shown to be smaller.

Note that our method is effective in reducing the depth
error of the corner pixels. The performance of the depth
correction along the calibrated distance is compared in
Fig. 9.
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reconstructed point cloud using structured light method
by iterative closest point (ICP) [40]. Green regions indi-
cate the distance between the point cloud and the mesh
is less than 10mm. Yellow and blue regions indicate the
absolute distance is between 10mm and 20mm.

5.2 Performance comparison

We compared the performance of our calibration method
with Schiller et al. [24] using the public software [38].
Since Schiller et al. [24] require checkerboard images,
we captured 41 images of the checkerboard described
in Section 2.2 within the distance range from 0.9m to
2.9m. When corner detection was performed automat-
ically, there were several incorrect localization of the
corners in ToF amplitude images because the corners
were too blurry as the cameras got further away from
the board. As a result, the average projection error on the
ToF amplitude images became very large, as shown in
Table 7. With some user assistance on feature selection,
we achieved the best result.

For comparison, we used the proposed 2.5D pattern
board and depth images for correspondence acquisition
for the ToF camera, as described in Section 2. 27 images
captured in the same distance range were used. The
projection error in ToF depth images using the proposed
method is shown to be smaller.

Note that our method is effective in reducing the depth
error of the corner pixels. The performance of the depth
correction along the calibrated distance is compared in
Fig. 9.
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(a) Deviation from planarity (b) Manufacturer provided (c) Ray corrected (d) Ray and bias corrected

Fig. 7: Flat wall evaluation. The point clouds are the reconstructed wall captured from 3.5m, 2.8m, and 2.0m. The
deviation from planarity is reduced using ray and bias correction. The curvature on the boundaries are flattened.

(a) Color image

(b) Reconstructed point
using structured light (c) Manufacturer (d) Ray corrected (e) Ray & bias corrected

Fig. 8: Comparison with (b) structured light reconstruction method [39]. The reconstructed meshes using (c)
manufacturer provided transformation, (d) ray correction, and (e) ray and bias correction are aligned using iterative
closest point (ICP) [40]. Green regions indicate the distance between the point cloud and the mesh is less than 10mm.

5.3 Rendering results
We have captured various real indoor scenes to show
that our method calibrates the color and depth cameras
accurately to align the depth measurement with the high
resolution color image.

Fig. 10 shows the 3D rendering results of different
scenes. The top two rows are the front and side views
of the same rendering of the 2.5D pattern plane using a
color-depth data pair in the validation group. It is shown
that ray correction improves the alignment of the color
pixel with the transferred 3D measurements compared
with the manufacturer provided transformation. Note
that in the second row of Fig. 10, the rendered pattern
plane is slightly curved in the result of ray correction,
whereas it is rather straight in the result of ray and
range bias correction. The third row shows the rendering
results of a scene with large depth of field. The scanned
lines at the bottom show the distortion of the depth mea-
surement of the wall on the corners and their correction.

More complex indoor scene renderings are presented
in Fig. 11 using different calibration methods. The mag-
nified views show that our method greatly reduces the
misalignment of the color and depth data. Note that our
result wears the correct texture on the thin structure of
the armrest and that the black antislip tape on the stairs
is correctly located on the edge of the step.

6 DISCUSSION

6.1 Applications

The sensor calibration of a color and depth camera pair
is a vital prerequisite for any applications using RGB-
D input because color and depth information generally
carry parallax from each other. Fig. 12 shows an ex-
ample of shape refinement by combining noisy depth
data from a ToF camera with a high resolution color
information [8]. Since Han et al. [8] enhance the depth
quality using the local shading information from the
color image, the consistency between color and depth
information is critical. The shading information gener-
ally changes drastically around the depth boundaries,
which makes a small calibration error cause an apparent
quality degradation as in Fig. 12 (c) and (d). It is shown
in Fig. 12 (e) that the exact color and depth alignment by
the proposed calibration method with depth correction
improves the quality of the result significantly.

In addition, since the depth data provided by a ToF
camera is generally noisy, the error distribution of a ToF
sensor can also be used for further depth processing
applications. From the remaining noise variance infor-
mation with respect to the pixel location and the distance
measurement after sensor calibration, we can build a
depth noise variance map. If we assume a zero-mean

Fig. 7: Flat wall evaluation. The point clouds are the reconstructed walls captured from 3.5m, 2.8m, and 2.0m. The
deviation from planarity is reduced using ray and bias correction. The curvature on the boundaries are flattened.
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Fig. 8: Comparison with (b) structured light reconstruction method [39]. The reconstructed meshes using (c)
manufacturer provided transformation, (d) ray correction, and (e) ray and bias correction are aligned using iterative
closest point (ICP) [40]. Green regions indicate the distance between the point cloud and the mesh is less than 10mm.
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that our method calibrates the color and depth cameras
accurately to align the depth measurement with the high
resolution color image.

Fig. 10 shows the 3D rendering results of different
scenes. The top two rows are the front and side views
of the same rendering of the 2.5D pattern plane using a
color-depth data pair in the validation group. It is shown
that ray correction improves the alignment of the color
pixel with the transferred 3D measurements compared
with the manufacturer provided transformation. Note
that in the second row of Fig. 10, the rendered pattern
plane is slightly curved in the result of ray correction,
whereas it is rather straight in the result of ray and
range bias correction. The third row shows the rendering
results of a scene with large depth of field. The scanned
lines at the bottom show the distortion of the depth mea-
surement of the wall on the corners and their correction.

More complex indoor scene renderings are presented
in Fig. 11 using different calibration methods. The mag-
nified views show that our method greatly reduces the
misalignment of the color and depth data. Note that our
result wears the correct texture on the thin structure of
the armrest and that the black antislip tape on the stairs
is correctly located on the edge of the step.

6 DISCUSSION
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The sensor calibration of a color and depth camera pair
is a vital prerequisite for any applications using RGB-
D input because color and depth information generally
carry parallax from each other. Fig. 12 shows an ex-
ample of shape refinement by combining noisy depth
data from a ToF camera with a high resolution color
information [8]. Since Han et al. [8] enhance the depth
quality using the local shading information from the
color image, the consistency between color and depth
information is critical. The shading information gener-
ally changes drastically around the depth boundaries,
which makes a small calibration error cause an apparent
quality degradation as in Fig. 12 (c) and (d). It is shown
in Fig. 12 (e) that the exact color and depth alignment by
the proposed calibration method with depth correction
improves the quality of the result significantly.

In addition, since the depth data provided by a ToF
camera is generally noisy, the error distribution of a ToF
sensor can also be used for further depth processing
applications. From the remaining noise variance infor-
mation with respect to the pixel location and the distance
measurement after sensor calibration, we can build a
depth noise variance map. If we assume a zero-mean
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manufacturer provided transformation, (d) ray correction, and (e) ray and bias correction are aligned using iterative
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5.3 Rendering results
We have captured various real indoor scenes to show
that our method calibrates the color and depth cameras
accurately to align the depth measurements with the
high resolution color image.

Fig. 10 shows the 3D rendering results of different
scenes. The top two rows are the front and side views
of the same rendering of the 2.5D pattern plane using a
color-depth data pair in the validation group. It is shown
that ray correction improves the alignment of the color
pixel with the transferred 3D measurements compared
with the manufacturer provided transformation. Note
that in the second row of Fig. 10, the rendered pattern
plane is slightly curved in the result of ray correction,
whereas it is rather straight in the result of ray and
range bias correction. The third row shows the rendering
results of a scene with large depth of field. The scanned
lines at the bottom show the distortion of the depth mea-
surement of the wall on the corners and their correction.

More complex indoor scene renderings are presented
in Fig. 11 using different calibration methods. The mag-
nified views show that our method greatly reduces the
misalignment of the color and depth data. Note that our
result wears the correct texture on the thin structure of
the armrest and that the black antislip tape on the stairs
is correctly located on the edge of the step.

6 DISCUSSION

6.1 Applications

The sensor calibration of a color and depth camera pair
is a vital prerequisite for any applications using RGB-
D input because color and depth information generally
carry parallax from each other. Fig. 12 shows an ex-
ample of shape refinement by combining noisy depth
data from a ToF camera with a high resolution color
information [8]. Since Han et al. [8] enhance the depth
quality using the local shading information from the
color image, the consistency between color and depth
information is critical. The shading information gener-
ally changes drastically around the depth boundaries,
which makes a small calibration error cause an apparent
quality degradation as in Fig. 12 (c) and (d). It is shown
in Fig. 12 (e) that the exact color and depth alignment by
the proposed calibration method with depth correction
improves the quality of the result significantly.

In addition, since the depth data provided by a ToF
camera is generally noisy, the error distribution of a ToF
sensor can also be used for further depth processing
applications. From the remaining noise variance infor-
mation with respect to the pixel location and the distance
measurement after sensor calibration, we can build a
depth noise variance map. If we assume a zero-mean
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Fig. 10: 3D rendering results of different scenes. (b) Manufacturer provided 3D measurements, (c) ray corrected 3D
measurements, and (d) ray and bias corrected 3D measurements are aligned with the corresponding color values
using the optimized pose of the ToF camera with respect to the color camera. The magnified views in the second
row show that the range bias correction straightens the corner of the rendered pattern plane. The scanned lines in
the bottom row show the distortion of the depth measurement of the wall on the corners and their correction.

Gaussian noise, an adaptive depth denoising algorithm
which uses the noise variance information such as [41]
may be a strong application.

6.2 Limitations
Like other calibration methods using checkerboards, the
proposed 2.5D pattern board cannot be captured from far
away where the holes are too small to be detected in the
ToF depth images. The pattern presented in this paper
covers the calibrated range of 3 meters. To cover the
further distance range, the pattern should be modified
to have a proper scale, and the same calibration method
can be applied.

Our method does not handle other sources of errors
for ToF camera such as reflectivity due to surface texture

and surface direction, sensor temperature, and lighting
environment. We have focused on effective modeling
of the systematic distance error of the sensor and have
shown outperforming results compared to the previous
method. The modeling of other sources of errors which
are well studied in metrology community remains as our
further work to enhance the performance.

6.3 Conclusion
We presented a calibration method for a color and depth
camera pair. To acquire an accurate set of correspon-
dences between the world and the camera coordinates
of a time-of-flight camera as well as a color camera, we
have designed a 2.5D pattern board with holes for near-
IR rays of the ToF sensor to pass through. For depth

Fig. 10: 3D rendering results of different scenes. (b) Manufacturer provided 3D measurements, (c) ray corrected 3D
measurements, and (d) ray and bias corrected 3D measurements are aligned with the corresponding color values
using the optimized pose of the ToF camera with respect to the color camera. The magnified views in the second
row show that the range bias correction straightens the corner of the rendered pattern plane. The scanned lines in
the bottom row show the distortion of the depth measurement of the wall on the corners and their correction.

Gaussian noise, an adaptive depth denoising algorithm
which uses the noise variance information such as [41]
may be a strong application.

6.2 Limitations
Like other calibration methods using checkerboards, the
proposed 2.5D pattern board cannot be captured from far
away where the holes are too small to be detected in the
ToF depth images. The pattern presented in this paper
covers the calibrated range of 3 meters. To cover the
further distance range, the pattern should be modified
to have a proper scale, and the same calibration method
can be applied.

Our method does not handle other sources of errors of
a ToF camera such as reflectivity due to surface texture
and surface direction, sensor temperature, and lighting

environment. We have focused on effective modeling
of the systematic distance error of the sensor and have
shown outperforming results compared to the previous
method. The modeling of other sources of errors which
are well studied in metrology community remains as our
further work to enhance the performance.

6.3 Conclusion
We presented a calibration method for a color and depth
camera pair. To acquire an accurate set of correspon-
dences between the world and the camera coordinates
of a time-of-flight camera as well as a color camera, we
have designed a 2.5D pattern board with holes for near-
IR rays of the ToF sensor to pass through. For depth
correction of the ToF sensor, the range-to-3D transfor-
mation is corrected and the range error profile for each
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(a) Color image (b) Schiller et al. [24] (c) Proposed without depth correction(d) Proposed with depth correction

Fig. 11: 3D renderings of the various indoor scenes using different calibration methods. The magnified views in blue
squares are the results of Schiller et al. [24], those in red and black squares are the results of the proposed method
with and without depth correction respectively. The magnified views show that our method greatly reduces the
misalignment of the color and depth data. Note that our result wears the correct texture on the thin structure of
the armrest instead of the back wall, and that the black antislip tape on the stairs is correctly located on the edge
of the step.

Fig. 11: 3D renderings of the various indoor scenes using different calibration methods. The magnified views in blue
squares are the results of Schiller et al. [24], those in red and black squares are the results of the proposed method
with and without depth correction respectively. The magnified views show that our method greatly reduces the
misalignment of the color and depth data. Note that our result wears the correct texture on the thin structure of
the armrest instead of the back wall, and that the black antislip tape on the stairs is correctly located on the edge
of the step.
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(a) Raw depth data
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depth correction

Fig. 12: An example of RGB-D shape refinement application using different calibration methods.

correction of the ToF sensor, the range-to-3D transfor-
mation is corrected and the range error profile for each
pixel is analyzed. We have presented that the amount
of error depends on the pixel location as well as the
distance measurement, which makes corner pixels with
larger depth errors require more powerful error correc-
tion than center pixels. This improvement is important
for ToF cameras since they usually suffer from very low
resolution.

We closely evaluated the performance of each stage
of the proposed framework and compared the perfor-
mance of our method with the previous calibration
method through various quanlitative and quantitative
experiments. We have shown that our improvement in
sensor calibration plays an important role to enhance
the quality of the related application. Moreover, we have
released our code along with the calibration data for the
research community. As a future work, we plan to utilize
the error analysis of this sensor calibration for further
enhancement of the depth information of the scene.
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pixel is analyzed. We have presented that the amount
of error depends on the pixel location as well as the
distance measurement, which makes corner pixels with
larger depth errors require more powerful error correc-
tion than center pixels. This improvement is important
for ToF cameras since they usually suffer from very low
resolution.

We closely evaluated the performance of each stage
of the proposed framework and compared the perfor-
mance of our method with the previous calibration
method through various quanlitative and quantitative
experiments. We have shown that our improvement in
sensor calibration plays an important role to enhance
the quality of the related application. Moreover, we have
released our code along with the calibration data for the
research community. As a future work, we plan to utilize
the error analysis of this sensor calibration for further
enhancement of the depth information of the scene.

ACKNOWLEDGMENTS

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Ko-
rea government (MSIP) (No. 2010-0028680). The authors
thank Hyowon Ha for his help with the comparison
evaluation using a structured light method.

Jiyoung Jung received the B.S and the M.S
degrees in Electrical Engineering from KAIST,
Korea in 2008 and 2010 respectively. She is cur-
rently a Ph.D. candidate in Robotics and Com-
puter Vision Lab in the Department of Electrical
Engineering in KAIST. Her research interests in-
clude photometric stereo, multiple sensor fusion,
and 3D modeling of indoor/outdoor scenes. She
is a recipient of Presidential Science Scholarship
by Korea Student Aid Foundation. She is a stu-
dent member of the IEEE.

Joon-Young Lee received the B.S degree in
Electrical and Electronic Engineering from Yon-
sei University, Korea in 2008, and the M.S de-
gree in Electrical Engineering from KAIST, Korea
in 2009. He is currently working toward the Ph.D.
degree in Electrical Engineering at KAIST. His
research interests include photometric methods
in computer vision, image enhancement, and
computational photography. He is a recipient of
the Samsung HumanTech Paper Award and the
Qualcomm Innovation Award. He is a student

member of the IEEE.

Yekeun Jeong received the B.S. and Ph.D.
degrees in Electrical Engineering from KAIST,
Korea in 2006 and 2012 respectively. He is cur-
rently working in Augmented Reality group at Mi-
crosoft. His research interests include structure
from motion, bundle adjustment, and their appli-
cations to large-scale 3D modeling with multiple
sensors and mobile robots. He is a recipient of
the Samsung Human-tech Thesis Award in 2010
and 2012 and the National Research Foundation
of Korea scholarship.

In So Kweon received the B.S. and M.S. de-
grees in mechanical design and production en-
gineering from Seoul National University, Ko-
rea, in 1981 and 1983, respectively, and the
PhD degree in robotics from the Robotics In-
stitute, Carnegie Mellon University, Pittsburgh,
PA, 1990. He worked for Toshiba R&D Center,
Japan, and joined the Department of Automation
and Design Engineering, KAIST, Korea in 1992,
where he is now a Professor with the Depart-
ment of Electrical Engineering. He is a recipient

of the best student paper runner-up award at the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 09). His research
interests are in camera and 3-D sensor fusion, color modeling and
analysis, visual tracking, and visual SLAM. He was the program co-chair
for the Asian Conference on Computer Vision (ACCV 07) and was the
general chair for the ACCV 12. He is also on the editorial board of the
International Journal of Computer Vision. He is a member of the IEEE
and the KROS.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, OCTOBER 2014 14

REFERENCES

[1] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade,
and D. Fulk, “The digital Michelangelo project: 3D scanning of
large statues,” in Proceedings of ACM SIGGRAPH, 2000.

[2] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake, “Real-time human pose
recognition in parts from a single depth image,” in Proceedings
of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.

[3] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and
A. Fitzgibbon, “KinectFusion: Real-time 3D reconstruction and
interaction using a moving depth camera,” in ACM Symposium
on User Interface Software and Technology, 2011.

[4] T. Simonite, “Depth-sensing cameras head to mobile de-
vices,” MIT Technology Review, http://www.technologyreview.
com/news/, 2013.

[5] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of RGB-D SLAM systems,” in
Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2012.

[6] J. Park, H. Kim, Y.-W. Tai, M. S. Brown, and I. S. Kweon, “High
quality depth map upsampling for 3D-TOF cameras,” in Proceed-
ings of IEEE International Conference on Computer Vision (ICCV),
2011.

[7] Q. Zhang, M. Ye, R. Yang, Y. Matsushita, and B. Wilburn, “Edge-
preserving photometric stereo via depth fusion,” in Proceedings of
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[8] Y. Han, J.-Y. Lee, and I. S. Kweon, “High quality shape from a
single RGB-D image under uncalibrated natural illumination,”
in Proceedings of IEEE International Conference on Computer Vision
(ICCV), 2013.

[9] R. Knies, “Collaboration, expertise produce enhanced sensing in
Xbox One,” The Official Microsoft Blog http://blogs.technet.com/
b/microsoft blog/, 2013.

[10] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
vol. 22, no. 11, pp. 1330–1334, 2000.

[11] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and
laser range finder (improves camera calibration),” in Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2004.

[12] Y. Bok, Y. Jeong, D.-G. Choi, and I. S. Kweon, “Capturing village-
level heritages with a hand-held camera-laser fusion sensor,”
International Journal on Computer Vision (IJCV), vol. 94, no. 1, pp.
36–53, 2011.

[13] J. Jung, Y. Jeong, J. Park, H. Ha, J. D. Kim, and I. S. Kweon, “A
novel 2.5D pattern for extrinsic calibration of ToF and camera
fusion system,” in Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2011.

[14] J. Jung, “Website for public source code,” https://sites.google.
com/site/jyjungcv/.

[15] S. Fuchs and G. Hirzinger, “Extrinsic and depth calibration of
ToF cameras,” in Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), 2008.

[16] Y. S. Kim, B. Kang, H. Lim, O. Choi, K. Lee, J. D. Kim, and C. Kim,
“Parametric model-based noise reduction for ToF depth sensors,”
in Three-Dimensional Image Processing (3DIP) and Applications II,
2012.

[17] Y. M. Kim, D. Chan, C. Theobalt, and S. Thrun, “Design and
calibration of a multi-view TOF sensor fusion system,” in IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops, 2008.

[18] J.-Y. Bouguet, “Camera calibration toolbox for matlab,” http://
www.vision.caltech.edu/bouguetj/calib doc, Last updated 2013.

[19] M. Lindner and A. Kolb, “Lateral and depth calibration of PMD-
distance sensors,” in Advances in Visual Computing, vol. 4292.
Springer, 2006, pp. 524–533.

[20] T. Kahlmann, F. Remondino, and H. Ingensand, “Calibration for
increased accuracy of the range imaging camera SwissrangerTM,”
in Proceedings of the ISPRS Commission V Symposium ’Image Engi-
neering and Vision Metrology’, 2006.

[21] F. Kern, “Supplementing laser scanner geometric data with pho-
togrametric images for modeling,” in XVIII. International CIPA
Symposium. Surveying and Documentation of Historic Buildings -
Monuments - Sites Traditional and Modern Methods, 2001, pp. 454–
461.

[22] C. Beder and R. Koch, “Calibration of focal length and 3D pose
based on the reflectance and depth image of a planar object,”
International Journal of Intelligent Systems Technologies and Applica-
tions, vol. 5, no. 3, pp. 285–294, 2008.

[23] D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree,
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