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Abstract—This paper introduces a new high dynamic range (HDR) imaging algorithm which utilizes rank minimization. Assuming a camera
responses linearly to scene radiance, the input low dynamic range (LDR) images captured with different exposure time exhibit a linear
dependency and form a rank-1 matrix when stacking intensity of each corresponding pixel together. In practice, misalignments caused by
camera motion, presences of moving objects, saturations and image noise break the rank-1 structure of the LDR images. To address these
problems, we present a rank minimization algorithm which simultaneously aligns LDR images and detects outliers for robust HDR generation.
We evaluate the performances of our algorithm systematically using synthetic examples and qualitatively compare our results with results
from the state-of-the-art HDR algorithms using challenging real world examples.
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1 INTRODUCTION

RADIANCE of a natural scene typically has a wider
dynamic range than the dynamic range of cameras that

can be recorded. One solution to obtain a full radiance map
is to capture multiple low dynamic range (LDR) images at
different exposures and merge them to reconstruct a high
dynamic range (HDR) image. Over the past decades, there
have been a lot of works targeting high dynamic range
imaging. Representative works include [1], [2], [3], [4], [5],
[6], [7], [8], [9].

Since the multiple LDR images were captured sequen-
tially with different exposure time, there is potential for
camera motion across images which leads to misalignment
artifacts. Moreover, when there are moving objects in a
scene, ghosting artifacts are unavoidable unless special
treatments were taken to detect the moving objects. The
different noise levels across the LDR images and saturated
regions also place additional challenges in the HDR imag-
ing problem.

In this paper, we present an Intensity Observation Model
(IOM) which describes the image acquisition process of
cameras from sensor irradiance to image intensity. By
assuming a linear camera response function (CRF), LDR
images are linearly dependent in the ideal case for HDR
generation. The linear dependency of LDR images forms a
rank-1 matrix when stacking intensity of each correspond-
ing pixel together as illustrated in Fig. 1. We formulate the
HDR generation problem into a rank minimization problem
where misalignment errors, moving objects, noise and other
nonlinear artifacts are considered as sparse outliers. Our
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goal is to estimate a rank-1 observation matrix such that the
LDR observations are clean and geometrically well aligned.
In this work, we assume the alignment can be achieved by
using the homography registration. The major benefits of
our approach are that it unifies the alignment and outlier
rejection processes in HDR and it is robust to sparse errors.
When saturated regions or moving objects are largely over-
lapped across images, the rank minimization algorithm may
consider the outliers as inliers. To this end, we have also
proposed a low rank matrix completion algorithm which
considers saturated regions and moving objects as missing
entries and use matrix completion (MC) to recover a low
rank matrix. Our algorithm is flexible to handle user inputs
to include or remove certain moving objects in the final
HDR images.

We test the performance of our algorithm systematically
using synthetic examples and qualitatively compare our
results with results from the state-of-the-art HDR algo-
rithms using challenging real world examples. We evaluate
the performance of our algorithm for alignment, HDR
background (latent) image decomposition and HDR com-
position. Also, we analyze how the radiometric calibration
affects the performance of our method. In addition, we have
generated synthetic LDR images from a ground truth HDR
image, and show quantitative comparisons with a recent
commercial program, Photoshop CS6.

Shorter versions of this work appeared in [10], [11].
This paper extends [10], [11] with deeper analyses to our
algorithm focusing on the HDR generation problem, further
technical details of our implementation, and additional
experimentations and evaluations. In addition, a new algo-
rithm on low rank matrix completion is introduced which
facilitates user control to reconstruct pseudo LDR images of
moving objects under different exposures. This allows us
to reconstruct a well aligned ghost-free HDR image with
inclusion of selected moving objects.
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Fig. 1: Illustration of the observed intensity values for (a) saturation region,
(b) moving object, and (c) consistent cases. Solid lines denote the ideal
relationship between intensity and exposure time, and dots and dotted lines
denote the observed intensity samples.

2 RELATED WORKS

There are broad literatures dedicated to the HDR imaging
problem. Early works by Mann and Picard [1] and De-
bevec and Malik [2] estimate camera response function and
compose a radiance map from multi-exposure images for a
static scene with a static camera. Simultaneously, they have
also introduced the tone mapping to compress the dynamic
range of the estimated HDR image to LDR using nonlinear
tone curve for HDR display purpose. Since our goal is HDR
generation, we focus our review to algorithms related to the
HDR generation and omit the review in the tone mapping
and high dynamic range compression literature. We refer
readers to [12] for a complete review of the HDR imaging
problem.

Due to the static camera limitation, Mitsunaga and Na-
yar [13] consider camera global motion to register images
with different exposure before creating a HDR image.
Ward [8] presents a translation based alignment algorithm
to account for camera motion among multi-exposure im-
ages. This work is later extended to handle rotational mo-
tion by Jacobs et al. [9]. Tomaszewska and Mantiuk [14] use
key-points to find homography transformations between
LDR images for registration. In practice, camera motion
is complicated where a global motion model might not
perform well in registration especially when camera center
is moving. Kang et al. [15] estimate pixel-wise displace-
ments between different LDR video frames for HDR video
generation. Since differently exposed images do not follow
the brightness consistency assumption [16] in motion es-
timation, Kang et al. transform intensities of LDR images
to luminance domain using exposure time information for
robust motion estimation. Zimmer et al. [17] propose to
estimate optical flow in gradient domain by making a
gradient consistency assumption. Together with HDR gen-
eration, they also try to enhance image resolution through
sub-pixel registration. Recently, Hu et al. [18] proposed
a displacement estimation based method which can deal
with large saturated regions in HDR generation by fusing
brightness and gradient consistencies on the transformed
domain by the intensity mapping function [19].

Another challenge in the HDR generation is the presence
of moving objects. Without proper treatments to detect
and remove moving objects, ghosting appears in result-
ing HDR images. Deghosting is a process to detect these
outliers which also include saturated and under-exposed
regions in LDR images to produce a ghost-free HDR image.
Although this problem can be handled with user correc-
tions as demonstrated by Agarwala et al. [20], automatic
methods are still preferable. Without explicit moving object
detection, Khan et al. [21] iteratively compute weights to

determine the contribution of different LDR images to the
final HDR image with a smaller weight assigned to a pixel
that is prone to be an outlier. In [3] and [4], Hasinoff et al.
and Granados et al. respectively define the optimal weights
based on noise characteristics to create a noise-free HDR
image. Recent work in [5], Gallo et al. detect artifact regions
explicitly by counting inconsistent pixels in a block-wise
comparison, and blend only consistent intensities of LDR
images. Raman and Chaudhuri [6] detect artifact regions
with similar criteria to the work by Gallo et al. [5], but
use super-pixel instead of regular patch grid. Heo et al. [7]
propose a ghost-free HDR imaging framework by using
a joint bilateral filter approach. They align LDR images
by homographies and detect ghost regions using Graph
cuts [22]. Wu et al. [23] use criteria such as consistency in
the radiance and color across exposures to detect moving
objects. Zhang and Cham [24] detect motion by looking for
changes in gradients between exposures. Recently, Sen et al.
[25] propose a patch-based energy-minimization formula-
tion that integrates alignment and reconstruction in a joint
optimization through their HDR image synthesis equation.
Kalantari et al. [26] further extend the work from Sen et
al. for HDR video generation using alternate exposures.
Granados et al. [27] analyze noise distribution of color
values to reconstruct irradiance from pixels that are likely
to correspond to the same static scene object. Lee et al.
[28] also explore rank minimization in HDR deghosting,
but their method cannot handle moving objects with large
overlapping area as opposed to our matrix completion
algorithm.

There are also hardware based approaches for HDR imag-
ing. Early work in [29], Nayar and Mitsunaga use spatially
varying pixel exposures to capture multiple LDR simulta-
neously for HDR imaging. Unger and Gustavson [30] and
Krymski [31] use a rolling shutter with varying exposures.
Nayar and Branzoi [32] propose HDR sensors to have
a unique response to light for adaptive dynamic range
imaging. Wang et al. [33] propose a split aperture camera
for HDR video capture. Hasinoff et al. [34] propose the
noise-optimal captures to reduce capturing time of LDR
images. Tocci et al. [35] develop a versatile HDR video
production system using beam splitter. Finally, some new
cameras and softwares, such as the Cannon MagicLantern
firmware [36], have an HDR video mode that allows
for capturing video with alternating ISOs. Although the
hardware based approaches have demonstrated impressive
HDR imaging, specialized HDR cameras have also been
built. These are expensive and are not widely available.

Comparing our work to the aforementioned methods, we
exploit the linear dependency of LDR images and formulate
the HDR generation problem into a rank minimization
problem. A major benefit of our approach is that our
formulation allows simultaneously registration and outlier
detection of LDR images. Since rank minimization depends
only on the sub-space structure of observation matrix and
is independent to scale of entries, our method is robust
to varying illuminations and magnitude of outliers. As
limitations of our approach, we assume the linear camera
response function and the scene of input LDR images can
be fully aligned by homographies.
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3 ALGORITHM

In this section, we formulate HDR generation as a rank min-
imization problem which simultaneously estimates a set of
geometric transformations to align LDR images and detects
both moving objects and under/over-exposed regions.

3.1 Low-Rank Structure of Multi-Exposure Images
For a static scene, multi-exposure images taken from a
fixed camera are linearly proportional to the exposure time
∆t under the linear CRF assumption, when the sensor
irradiance R of a scene is constant [13], [37]. While a
linear relationship is imposed among the images, we cannot
observe the ideal relationship in practice due to artifacts
such as camera motions, moving objects, and intensity
saturation (as shown in Fig. 1).

We model the forward-intensity acquisition pipeline,
called it as IOM, in consideration of the artifacts. In Fig. 1,
the artifacts from moving objects do not follow any sta-
tistical distribution. Thus, instead of modeling the artifacts
using a probabilistic model, we model the artifacts as an ad-
ditive error e. In addition, we represent the camera motion
by a homography transformation group g = {g1, . . . , gn} ∈
Rp×n, which is a p-parameter group. Therefore, the intensity
of an image I is observed though the IOM as

I = f (k(R+ e) ·∆t) ◦ g−1, (1)

where f denotes the CRF, ◦ denotes an geometric transform
operator that transforms an image by geometric transfor-
mation R2 → R2, and k denotes a camera parameter [13]
which depends on focal length of camera lens, diameter
of aperture and so on. Since most modern camera lenses
are designed to compensate for pixel varying effects, we
assume that the parameter k provides a constant mapping
between scene radiance and irradiance [2] and is specified
by a constant value for each HDR dataset taken by a camera
with the same lens, and with fixed focal length and fixed
aperture. We also assume the CRF is linear (or calibrated,
i.e., f(I) = I), because CRF can be readily estimated
by various calibration methods. Then, from Eq. (1), each
observed image is represented as

Ii ◦ gi = f (k(R+ ei) ·∆ti)
= kR ·∆ti + kei ·∆ti (f(I) = I)

= Ai + Ei (Ai = kR ·∆ti,
Ei = kei ·∆ti), (2)

where i denotes an image index of multi-exposures.
By stacking the vectorized images Ii, we construct the

observation intensity matrix O = [vec(I1)| · · · |vec(In)] ∈
Rm×n, where m and n are the number of pixels
and images, respectively. Similarly, we represent A =
[vec(A1)| · · · |vec(An)], E = [vec(E1)| · · · |vec(En)], and
g = {g1, . . . , gn} ∈ Rp×n. Thus, we convert the IOM
from Eq. (2) into a matrix form O ◦ g = A + E, where
◦ transforms each vectorized image by each correspond-
ing geometric transformation g. Here, each column of the
matrix A is spanned by sensor irradiance R. This means
that the aligned observation O ◦ g is equal to the latent
background irradiance A, which is the rank-1 matrix, if

there is no artifact in a scene (E = 0). In practice, the rank
of O◦g is higher than 1 due to the aforementioned artifacts.
Therefore, the robust HDR composition problem becomes
a problem to decompose the observation matrix O ◦ g into
the matrix A close to rank-1 and the error matrix E while
simultaneously estimate the transformations g that make
the matrix A approaching to rank-1.

3.2 Rank Minimization Approach for aligned images

Our formulation is developed based on the recent advances
in Robust Principal Component Analysis (RPCA) [38] by
rank minimization to recover a low-rank structure of clean
data. The rank of a matrix is independent to the size of
a matrix and the magnitude of its entries, but it only
depends on the sub-space structure of its entries. Due to this
property, the rank minimization based method [38] shows
robustness to outliers and optimality from the convexity
of the objective function thanks to the blessing of large
amounts of data. However, when the number of inputs in
O is very limited, we observed that the solution from [38],
[39] includes some outliers as inliers and vice versa. This
is because the nuclear norm formulation in [38] not only
minimizes the rank of clean data, but it also minimizes
the magnitudes of clean data. Such the limited number
of observations is common in the HDR problems. In most
HDR methods, only 2-5 exposures were captured since the
input LDR images already cover almost all the informative
dynamic range of a scene. In addition, the magnitudes of
radiance in a reconstructed HDR image are usually quite
large. Consequently, the method in [38] might not be well
suited to the HDR problem.

To derive a better solution, we utilize the prior rank
information as a constraint. If the multi-exposure images
are already aligned, our problem is formulated into a partial
sum objective function as shown in our previous work [10],
[11]:

A∗,E∗ = arg min
A,E

p2(A) + λ‖E‖1,

subject to O = A + E, (3)

where p2(A) =
∑min(m,n)

i=2 σi(A) is the partial sum of singu-
lar values σi(A) from the second to the last, ‖·‖1 denotes
l1-norm and λ is the weight for sparse error. By using the
partial sum instead of the nuclear norm, we encourage the
rank-1 constraint rather than enforcing a hard constraint
(e.g. by projecting resulting matrix to a low dimensional
space).

In practice, we expect that the magnitude of additive
error E is proportional to exposure time ∆t due to the
proportional relationship between E and e in Eq. (2). For ex-
ample, a moving object affects the images taken with short
or long exposure time differently. However, the objective
function defined in Eq. (3) treats the error component E
equally which implicitly assumes that the multi-exposure
images are affected equally by corrupted radiance from
moving objects or saturations. To resolve the problem, we
compensate the intensities for each image with exposure
time before optimizing Eq. (3). We apply scaling to each
input image Ii by the inverse value of i-th exposure time
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(e.g. C ·∆tref/∆ti, where C is a scaling constant. We set
C = 1 in the implementation.). After the optimization, the
inverse scaling with ∆ti/(C ·∆tref) is applied to the results
to recover the original scale.

3.3 Simultaneous Rank Minimization and Alignment
Rank minimization is not only suitable for outlier detec-
tion, but it can also be used in image alignment. In [39],
Peng et al. showed that batch image alignment task [40]
can be performed by enforcing sparsity for outliers and by
minimizing rank (nuclear norm, the sum of all the singular
values) as similarity cost, instead of using the brightness
consistency in conventional alignment methods. Due to
the invariant feature of rank to the scale, their alignment
results showed robustness to varying illuminations. This
formulation is suitable to our model defined in the previous
section, as the IOM. Similar to the work in [38], we observe
that the alignment method by rank minimization requires a
large number of inputs, and could produce a degenerated
solution when insufficient inputs are given. Thus, we use
the partial sum of singular values instead of nuclear norm
in the alignment task which demonstrates better alignment
results.

By introducing the geometric parameterization model
O ◦ g = A + E to Eq. (3), we can estimate the latent
background radiance scene and corrupted regions together
with the geometric parameters g to align the images. The
objective function can be defined as follows:

A∗,E∗,g∗ = arg min
A,E,g

p2(A) + λ‖E‖1,

subject to O ◦ g = A + E. (4)

Since the constraint including the transformation oper-
ator is highly non-linear, it makes the above optimiza-
tion hard. When the change in g is small, the constraint
can be approximately linearized with current estimate as
O ◦ (g + ∆g) ≈ O ◦ g +

∑
n
j=1Jj∆gεjε

T
j , where Ji =

∂
∂ς vec(Ii ◦ ς)|ς=gi ∈ Rm×p is the Jacobian of the i-th image
with respect to the transformation gi (we invite readers to
[39] for details about the Jacobian representation.) and {εi}
denotes the standard basis for Rn.

In this work, we assume a small camera motion by hand
shake to linearize the transformation operator. We adopt
the coarse-to-fine approach on scale pyramid to deal with
larger camera motion which cannot be covered by the local
approximation. Although the feature based alignments [41]
can be applied as initial, and then optimized by our method
to achieve the accurate alignment, in this paper, we did not
use the feature based method as initial.

3.4 Optimization
The proposed objective functions in Eqs. 3 and 4 form a
constrained optimization problem. In recent advances in the
rank minimization, Lin et al. [42] proposed an augmented
Lagrange multipliers (ALM) method [43] to minimize the
high dimensional nuclear norm, and Peng et al. [39] adopt
the ALM method to solve the similar problem of Eq. (4).
These approaches are known as scalable and fast conver-
gence. We follow the optimization procedures in [39], [42]

to derive our solution. The proposed Lagrangian function
of Eqs. 3 and 4 can be formulated as the following form:

L({·},Z, µ) = p2(A) + λ‖E‖1
+ < Z, h({·}) > +

µ

2
‖h({·})‖2F , (5)

where µ is a positive scalar, Z ∈ Rm×n is an estimate of the
Lagrange multiplier matrix, <,> denotes the matrix inner
product, and ‖·‖F denotes the Frobenius norm. We define
the constraint function h(·) for each problem respectively
as h(A,E) = O−A−E for the pre-aligned case defined in
Eq. (3) of Sec. 3.2 or h(A,E,∆g) = O ◦ g+

∑n
j=1 Jj∆gεjε

T
j −

A−E for estimating geometric parameter g simultaneously
as defined in Eq. (4) of Sec. 3.3.

To solve Eq. (5), the problem can be divided into three
sub-problems for A,E, and additionally ∆g for the align-
ment case. The overall solution can be solved by iteratively
minimizing the objective functions for A, E, and g until
converged. For a simple notation, we denote an auxiliary
variable O′t as O′t = O for the pre-aligned case of Sec. 3.2
or O′t = O ◦ g +

∑n
j=1 Jj∆gtεjε

T
j for the simultaneous

alignment case of Sec. 3.3. We describe the update methods
as follows.
Updating A The sub-problem for A is updated by fixing
the other variables, and it is derived by

At+1 = arg min
A

L(A| · )

= arg min
A

p2(A)+ < Zt,O
′
t −A−Et >

+
µt
2
‖O′t −A−Et‖

2
F

= arg min
A

µ−1
t · p2(A)

+
1

2

∥∥A− (O′t −Et + µ−1
t Zt)

∥∥2

F
, (6)

where t indicates the iteration index.
Eq. (6) is a rank-1 case in [11], and can be solved by the

Partial Singular Value Thresholding (PSVT) operator [11]:

Pτ [Y] = U(DY 1 + Sτ [DY 2])VT

= arg min
X

1

2
‖X−Y‖2F + τ · p2(X),

where DY 1 = diag(σ1, 0, · · · , 0),

DY 2 = diag(0, σ2, · · · , σl),

(7)

where τ > 0, l = min(m,n), and Sτ [X] = {sign(x) ·
max(0, |x| − τ)} denotes the entry-wise soft-thresholding
operator [44]. U,V and D (= DY1

+DY2
) correspond to the

singular value decomposition of Y. In Oh et al. [11], the
PSVT operator provides the closed-form solution of Eq. (7).

For each iteration, At+1 can be updated with the PSVT
operator P[·] as

At+1 = Pµ−1
t

[O′t −Et + Zt/µt]. (8)
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Algorithm 1 [RPCA-OURS] RPCA based rank-1 optimiza-
tion by the ALM.
Input : O ∈ Rm×n,g ∈ Rp×n, λ > 0.

Initialize Z0, A0 = E0 = 0,∆g0 = 0, µ0 > 0, ρ > 1 and
t = 0.
while not converged do

while not converged do
At+1 = Pµ−1

t
[O′t −Et + Zt/µt].

Et+1 = Sλµ−1
t

[(O′t −At+1 + µ−1
t Zt)].

For all i,
∆gt+1

i = J†i vec(Ai,t+1 +Ei,t+1 −Oi ◦ gi − µ−1
t Zi,t).

(only for alignment case).
end while
Zt+1 = Zt + µt(O

′
t+1 −At+1 −Et+1).

µt+1 = ρµt.
end while

Output : (At,Et,∆gt).

Updating E The sub-problem for E can be derived by

Et+1 = arg min
E

L(E| · )

= arg min
E

λ‖E‖1

+ < Zt,O
′
t −At −E > +

µt
2
‖O′t −At −E‖2F

= arg min
E

λµ−1
t ‖E‖1

+
1

2

∥∥E− (O′t −At + µ−1
t Zt)

∥∥2

F
. (9)

The form of the objective function in Eq. (9) consisting of the
proximity and l1-norm terms can be effectively minimized
by the soft-thresholding operator Sτ [·] defined in [44].
Eq. (9) can be solved by applying the soft-thresholding
operator directly:

Et+1 = Sλµ−1
t

[O′t −At+1 + µ−1
t Zt]. (10)

Updating ∆g Solving the sub-problem for ∆g is only
needed for the simultaneous alignment case. The sub-
problem for ∆g can be derived from Eq. (5) as

L(∆g| · ) (11)

=
µt
2
‖O ◦ g +

n∑
j=1

Jj∆gεjε
T
j −At −Et + µ−1

t Zt‖2F .

Since Eq. (11) is a quadratic equation for the variable ∆g,
it can be solved in a least square sense. The closed-form
solution of ∆gi is updated by the following equation.

∆gt+1
i = J†i vec(Ai,t + Ei,t −Oi ◦ gi − µ−1

t Zi,t), (12)

where the sub-index notation i denotes the i-th column
vector (the i-th image) of the matrix, J†i denotes the Moore-
Penrose pseudo-inverse of Ji.
Updating Z The update strategy of the Lagrange multi-
plier Z follows the basic strategy of the ALM method [42],
[43], [45] as the following equation:

Zt+1 = Zt + µt · h({·}). (13)

Overall Procedures The algorithm to solve Eq. (5) is sum-
marized as Alg. 1. During the inner loop in optimization,

the sub-problems are optimized until converged. In our
experiments, we found that optimizing the inner loop once
is enough to converge a correct solution and shows faster
convergence behavior.

Due to the linearization of transformation, Alg. 1 is only
valid for local changes on ∆g. To avoid local minima,
Alg. 1 proceeds iteratively in a coarse-to-fine manner. We
adopt explicit warping with current optimized geometric
parameters after each convergence of Alg. 1. The algorithm
is terminated when the iteration and explicit warping is
converged at the finest scale. Fig. 2-(a) and (b) shows our
intermediate results where input images are automatically
aligned and decomposed into low-rank LDR images and
sparse outlier images.

3.5 Extension to Matrix Completion

As noted by Srikantha and Sidibè [46] in a recent review on
the ghost detection and removal for HDR imaging, “there
is no single best method and the selection of an approach
depends on the user’s goal”. It is necessary to allow user
control in the HDR deghosting problem where a simple
solution to remove all outlier moving objects may not be
a preferable solution. In addition, in the presence of large
moving objects but with small movements, parts of the
moving objects may appear across every LDR images. In
such cases, our outlier rejection method would remove the
parts that were not overlapped, but the overlapping parts
would remain in the reconstructed HDR image as a biased
low-rank component. This causes a failure in our method.
Similarly, if more than half of LDR images have the same
saturated regions, the outlier rejection method can consider
the saturated regions as inliers and rejects the correct image
details as outliers.

In this subsection, we further reformulate our problem
into a low-rank matrix completion (MC) problem where
a user is allowed to select preferable moving objects or
regions which will be left in the final HDR image. By
discarding the entries of coefficient selected by a user,
the matrix completion repairs the low-rank components in
other LDR images by properly re-scaling the fixed entries to
match the exposure time of other LDR images. This allows
us to produce a set of pseudo LDR images where moving
objects are well-aligned and consistent with background
exposure.

Given the fixed locations of user selected entries (This
can be achieved using the method in [20] with simple user
mark-ups and segmentation), our goal is to recover a low-
rank matrix, essentially a rank-1 matrix, with missing en-
tries (user selected regions in other LDR images or saturated
regions) and unknown corruptions (non-selected regions).
This shares the same spirit with the MC problem [47], [48].
The MC problem with our partial sum of singular values
can be formulated as:

min
A,E

p2(A) + λ‖E‖1 s.t. PΩ(O) = PΩ(A + E), (14)

where PΩ(·) : Rm×n → Rm×n is an orthogonal projection
operator which defines over valid entries, Ω, of observa-
tions. In other words, we are considering the following
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(a) O ◦ g (b) A,E (c) Ω,A,E (d) Zoom-view

Fig. 2: Intermediate results after rank minimization. (a) Aligned O ◦g, (b) Low-rank A and sparse outlier E obtained by RPCA-OURS (c) Ω (red masks are
provided by user, and black regions are automatically detected saturation/under-exposed regions), low-rank A and sparse outlier E obtained by MC-OURS.
An offset, 0.5, is added to E for display purpose. (d) Comparison between RPCA-OURS (Top) and MC-OURS (Bottom). Since MC-OURS excluded the
saturation regions as missing values, the estimated low rank matrix is more accurate. While the results in RPCA-OURS are biased by the large saturation
region that appears consistently across half number of input images.

problem:

Oij =

{
Aij + Eij , ∀(i, j) ∈ Ω
∅, ∀(i, j) ∈ Ωc

where ∅ is an empty set which represents missing values
in the observations.

Again, the optimization problem can be formulated by
the ALM as follow:

L(A,E,Z, µ) = p2(A) + λ‖PΩ(E)‖1 + 〈Z,PΩ(O−A−E)〉

+
µ

2
‖PΩ(O−A−E)‖2F .

(15)
We now describe the optimization procedures for Eq. (15),

by splitting the problem into the sub-problems for A and
E. The significant difference is on optimizing A, which can
be formulated as:

At+1 = arg min
A

p2(A) + 〈Zt,PΩ(O−A−Et)〉

+
µt
2
‖PΩ(O−A−Et)‖2F

= arg min
A

µ−1
t p2(A)

+
1

2

∥∥PΩ(A)− (PΩ(O−Et) + µ−1
t Zt)

∥∥2

F
.

(16)

In contrast to Eq. (8), Eq. (16) cannot be solved in a closed-
form manner due to the projection operator. Therefore,
we solve it iteratively. This process is inspired by the
Accelerated Proximal Gradient (APG) approach [49], [50].
The iterative procedures can be summarized as:

1) Qk = At,k + bk−1
bk+1

(At,k −At,k−1),

2) At,k+1 = Pµ−1
t

[PΩ(O−Et) + PΩc(Qk) + Zt/µt],

3) bk+1 =
1+
√

1+4b2k
2 ,

4) After converged, At+1 = At,k+1,

where bi is a positive sequence with the initial b0 = 1.

Solving the sub-problem for E is similar with Eqs. 9 and
(10) as follows.

PΩ(Et+1) = arg min
PΩ(E)

λ‖PΩ(E)‖1 + 〈Zt,PΩ(O−At −E)〉

+
µt
2
‖PΩ(O−At −E)‖2F

= arg min
PΩ(E)

λµ−1
t ‖PΩ(E)‖1

+
1

2

∥∥PΩ(E)− PΩ(O−At)− µ−1
t Zt

∥∥2

F
,

(17)
and its corresponding closed-form solution is defined as:

PΩ(Et+1) = Sλµ−1
t

[PΩ(O−At) + µ−1
t Zt]. (18)

After converged, we re-estimate E = O−A to obtain all val-
ues of E including the missing entries. Alg. 2 summarizes
the optimization procedures. Similar to the rank minimiza-
tion formulation, we can include geometric alignment in
the MC formulation. However, we omit it for the clarity of
presentation since the additional procedures are similar.

Compared to previous methods, especially the method
in Agarwala et al. [20], our MC solution can accurately
correct the exposure of selected moving objects in different
exposure setting of LDR images. This allows the recon-
structed HDR image to have the correct exposure for the
selected moving objects while the method in [20] does not
correct exposure of moving objects. Compared to the recent
methods in Sen et al. [25], Hu et al. [18], and Kalantari et
al. [26] where they also reconstruct pseudo LDR images
before the HDR image reconstruction, our MC solution
cannot recover the dynamic range of moving HDR objects.
Essentially, the details of moving objects are likely to be
reconstructed from a single image. However, since we do
not find patch-wise correspondences as performed in [18],
[25], our approach can avoid discontinuities and misalign-
ment artifacts due to mismatches of patches. Note that
accurate matching of moving objects with large movement
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Algorithm 2 [MC-OURS] Rank-1 matrix completion by the
ALM.
Input : O ∈ Rm×n,Ω = {0, 1}m×n, λ > 0.

Initialize A0 = O,E0 = Z0 = 0, µ0 > 0, ρ > 1 and t = 0.
while not converged do

while not converged do
b0 = 1,Q0 = At,At,0 = At

while not converged do
At,k+1 = Pµ−1

t
[PΩ(O−Et) + PΩc(Qk) + 1

µt
Zt]

bk+1 =
1+
√

1+4b2k
2 ,

Qk+1 = At,k+1 + bk−1
bk+1

(At,k+1 −At,k),

end while
At+1 = At,k+1.
PΩ(Et+1) = Sλµ−1

t
[PΩ(Ot −At+1) + µ−1

t Zt].
end while
Zt+1 = Zt + µt(PΩ(Ot+1 −At+1 −Et+1)).
µt+1 = ρµt.

end while
Et = O−At.

Output : (At,Et).

is an ill-posed problem especially if the shape of moving
objects can be deformed. Compared to Granados et al. [27],
their approach requires noisy inputs since their exposure
correction is relied on matching noise statistics under dif-
ferent exposures. Consequentially, their reconstructed HDR
images can be noisy. On the other hand, our approach does
not have this requirement on inputs. In Fig. 2-(c), we show
the intermediate results after MC. More discussions on the
results between our two methods in Alg. 1 and Alg. 2 will
be provided in Sec. 4.2.2.

3.6 Implementation

This subsection provides additional implementation details
needed to reproduce our results. Across all experiments,
we set λ = 1/

√
max(m,n) in Eqs. 3, 4 and 14, where m and

n are the row and column size of the matrix O; therefore
there is no manual tuning parameter.

Radiometric calibration In many cameras, nonlinearity
between sensor irradiance and image intensity is intention-
ally programmed by camera manufacturers. However, our
rank minimization methods assume a linear CRF f(·). Thus,
the radiometric calibration step is necessary if the camera
CRF is nonlinear. In our experiments, we utilize the method
in Lee et al. [37] which is one of the state-of-the-art method
to estimate CRF from input images captured with different
exposure. Once f(·) is estimated, f−1(I) is applied on the
image intensity I to linearize the inputs.

Saturation and under-exposure assessment When a re-
gion is over-exposed/under-exposed, the rank-1 linear re-
lationship is violated. In our MC formulation, we can
consider them as missing values and then repair the missing
entries using Alg. 2. To detect the outlier regions, we
masked out extreme intensity values as follow:

M i(I) =

{
1, Ith < Ii < 1− Ith,
0, otherwise, (19)

(a) (b)
Fig. 3: Our user input for MC-OURS. (a) Automatic method through outlier
analysis, (b) User mark-up on super-pixel segmentation [52].

where M i is a saturation mask for the i-th LDR images,
Ith denotes the saturation threshold value which is set to
2/255 in our implementation. This process is applied to
RGB channels individually.

HDR composition and tone mapping To composite an
HDR image from repaired low-rank LDR images, we follow
the standard method in [2]:

H(x) =
1

n

n∑
i=1

Ai(x)/∆ti, (20)

where n represents the number of input images, and H(x)
and Ai(x) denote an estimated radiance and a low-rank
intensity respectively.

After the HDR composition, we apply the tone-mapping
using the local adaptation method in Photoshop CS6 to
convert HDR to LDR. This is the same representation as
in Sen et al. [25], where the results are manually tone-
mapped by Photomatrix [51]. In experimental comparisons,
we manually tune the tone-mapping parameters to match
our results with the results from Sen et al. [25]. In compar-
isons with results from Heo et al. [7], we use the executables
provided by the author to produce their tone-mapped HDR
images.

User input for matrix completion We provide two meth-
ods to mark up outlier masks for moving objects inclusion
in our MC-OURS formulation. In the first case where
moving objects are non-overlapping, we can identify the
moving objects in the sparse outlier E after RPCA-OURS
as illustrated in Fig. 3 (a). This method is used to produce
our results in Figs. 2, 13, 14, and 15 respectively. In the
case where moving objects are overlapped, we provide a
simple user interface which allows a user to mark on super-
pixels of a reference image to indicate outlier masks of other
images as illustrated in Fig. 3 (b). This method is used to
produce our results in Fig. 17. In Fig. 18, we first use the first
method to make an initial mask, and then use the second
method to correct the mask of the acrobat.

Computational time Our methods are implemented on
Matlab without any code optimization. To compare running
time with other algorithms, we perform an experiment on
a PC with i7-2600 (3.4GHz) and 24 Gb RAM with 5 input
images with 640×480 size. For our method with alignment,
we use 3 scale pyramid levels. Below shows our running
time and comparisons of running time with three state-of-
the-art HDR algorithms, i.e. Heo [7], Hu [18], and Sen [25].

Heo [7] Hu [18] Sen [25] RPCA-
OURS

RPCA-
OURS
+Align

MC-
OURS

Env. C++ Matlab
+Mex

Matlab
+Mex

Matlab Matlab Matlab

Run time 3 min 94 s 106 s 10 s 57 s 144 s



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 6, JUNE 2015 8

4 6 8 10

0.1

0.2

0.3

0.4

4 6 8 10

0.1

0.2

0.3

0.4

4 6 8 10

0.1

0.2

0.3

0.4

4 6 8 10

0.1

0.2

0.3

0.4(a) (b) (c) (d)

Fig. 4: Reconstruction error for synthetic data with varying numbers of
columns n. (a) RPCA. (b) RPCA-OURS. (c) MC. (d) MC-OURS. The Y–
axis represents the corruption ratio r ∈ [0, 0.4]. The X–axis represents the
column size n ∈ [4, 10] for the rank-1 case. The color magnitude represents
the normalized reconstruction error ‖AGT−Â‖

‖AGT ‖
.

4 EXPERIMENTAL RESULTS

To evaluate the proposed algorithm, we systematically an-
alyze the performance using synthetic examples and then
compare our results with results from the state-of-the-art
HDR algorithms using challenging real world examples. In
the following subsections, we present evaluation results for
alignment, HDR background (latent) image decomposition,
and HDR composition.

4.1 Synthetic Evaluations
We provide synthetic evaluations for our core algorithms,
which are the rank minimization methods based on RPCA
and MC. To synthesize a ground-truth low-rank (rank 1)
matrix AGT ∈ Rm×n, we perform a linear combination of
a arbitrary orthogonal basis vector with a weight vector to
span each column vector. The weight vector is randomly
sampled from the uniform distribution U [0, 1]. To generate
sparse outliers, we select m×n×r entries from AGT , where
r denotes the corruption ratio. Larger r means more outlier
entries. The selected entries are corrupted by random errors
from U [0, 1]. We ran each of the following tests, over 30
trials, and report the averages of overall trials.

We denote the proposed models as RPCA-OURS for
Eq. (3) and MC-OURS for Eq. (14), and RPCA for [38] (the
nuclear norm based RPCA) and MC for [53] (the nuclear
norm based MC).

4.1.1 Recoverability
To verify the robustness of our methods against outliers,
we measure the average error between the ground-truth
and the recovered Â as ‖AGT−Â‖

‖AGT ‖ . We vary the column size
n (i.e. the number of observations) according to corruption
ratio, and we fixed the row m = 10, 000. For the MC
methods, we remove 30% of outlier as missing entries to
recover Â. The missing entries mimic saturated regions in
LDR images.

The results are shown in Fig. 4. The larger the blue
area, the more robust the tested algorithms. As n decreases
(i.e. the number of observations decreases), the recover-
ability of the conventional RPCA based methods in (a,c)
decrease, while our methods in (b,d) still have larger re-
coverable area.

We have also quantitatively evaluated the performance
on a more realistic data. We generate synthetic LDR im-
ages with linear CRF and no geometric misalignment. The
ground truth HDR images are obtained from the sIBL
archive [54]. We add 5% additive random noise to the LDR
images. Fig. 5 show the comparison between RPCA and
RPCA-OURS. Our method shows better PSNR than RPCA

Ours
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Fig. 5: Quantitative results for denoising. Top: Test examples. Middle: PSNR.
Bottom: An example error maps for Street data between (a) Photoshop
CS6, (b) the conventional RPCA and (c) Ours. The error maps show the
normalized absolute error AE = |HGT (x)−Hest(x)|.
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Fig. 6: Convergence. (Left) Termination criterion according to outer itera-
tions. (Right) Relative step size ( ‖At−At−1‖

‖At‖
) according to outer iterations.

on most of the tested examples. We have also compare
the performance with Photoshop CS6 which has a built-
in ghost removal function. The error map in Figs. 5-(a-c)
show the absolute error AE = |HGT (x) − Hest(x)| for the
green channel, where HGT and Hest are the ground truth
HDR and the restored HDR images respectively. Compar-
ing the results, both RPCA and RPCA-OURS shows better
denoising than Photoshop CS6 in the magnified view. Our
method grossly shows the least error in Fig. 5-(c). The RPCA
fails to recover scene radiance especially for large radiance
regions due to limited observations, and the nuclear norm
favors a solution with smaller magnitudes. More results
can be found in the supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2361338.

4.1.2 Convergence

To examine the convergence behavior of both RPCA-OURS
and MC-OURS, we plot the evolution of the relative step
size ‖At−At−1‖

‖At‖ and termination criteria ‖O−A−E‖F‖O‖F over the
outer iterations in Fig. 6. We randomly generated rank-1
matrices with m = 10, 000 rows and n = 10 columns, and
the average values over the trials are reported.

Fig. 6 shows gradual convergence under the same ter-
mination criterion. The fluctuation in the relative step size
results in (Right) near the iteration 35 is due to early
termination of a few trials. In an individual trial, the relative
step size are typically monotonically decreasing. In our real
world experience, our algorithms converge for all testing
examples.
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Fig. 7: Left: Synthetically generated weak nonlinear response functions.
Right: Reconstruction error ‖AGT−Â‖

‖AGT ‖
against degree of nonlinearity con-

trolled by γ.

Fig. 8: Comparisons of our results with and without the radiometric calibra-
tion. One of input images (Left). The low-rank latent images without (Middle)
and with (Right) CRF correction.

4.1.3 Effects of CRF
When a CRF is nonlinear, we apply the method in [37]
to calibrate CRF and then linearize our inputs. However,
because of imperfect estimation, weak nonlinearity can re-
main. We evaluate the effects of remaining weak nonlinear-
ity using synthetically generated weak nonlinear response
functions as shown in Fig. 7-(Left). The weak nonlinear
functions are generated by combining a linear function and
a gamma curve as f(x) = γ·x+(1−γ)·x1.5 for 0 ≤ γ ≤ 1, and
f(x) = α · x+ (1− α) · x 1

1.5 for 1 < γ ≤ 2, where α = 2− γ.
Fig. 7-(Right) shows the error ‖AGT−Â‖

‖AGT ‖ according to dif-
ferent nonlinearity parameter. As expected, our algorithms
perform better with better linearized inputs. Fig. 8 shows
comparisons on reconstructed HDR images with and with-
out CRF correction. The results are obtained using RPCA-
OURS. Weak ghosting artifacts appear in the results without
CRF correction. Thus, to achieve high quality results, pre-
processing with CRF correction is a necessary.

4.2 Real world examples

4.2.1 Alignment among Different Exposures
We first validate the performance of our alignment algo-
rithm. Since common image alignment methods follow the
brightness consistency assumption [40], this assumption is
no longer valid in our HDR scenario. We compare accuracy
of our alignment algorithm to RASL [39], which is a state-
of-the-art alignment algorithm that is also based on RPCA.

In our experiment, we use the SculptureGarden dataset
which contains large area of saturations and under-exposed
regions, as well as moving objects. We synthetically gener-
ate misaligned images by applying affine transformation
randomly and then evaluate the performance of regis-
tration. The random affine transformation is defined as
[a11 a12 a13; a21 a22 a23; 0 0 1] (where a{11,22} ∼ N (1, 0.052),
a{12,21} ∼ N (0, 0.052), and a{13,23} ∼ N (0, σ2)). Fig. 9
and 10 show the registration results1. Again, our approach
achieves high accuracy in registration as shown in the

1. We provide intermediate alignment results for the σ = 2 case at here:
http://thoh.kaist.ac.kr/research/partialsum/hdr/align.gif

Fig. 9: An example of unaligned input and our output (RPCA-OURS) on the
SculptureGarden dataset.

σ 1 2 4 8 16 24
Ours 0.11 0.11 0.10 0.11 0.11 0.13
RASL 119.54 80.34 99.86 68.30 101.41 116.99
F. Init 0.82 1.07 1.11 1.03 0.86 1.31

F.+Bundle 0.32 0.40 0.42 0.36 0.37 0.42

Fig. 10: Quantitative comparisons of alignment accuracy on the Sculp-
tureGarden dataset. Misaligned inputs are synthetically generated using
random affine transforms. The average alignment errors over 5 trials are
reported.

Fig. 11: An alignment result on a real world example. Left: Average of
unaligned inputs, Middle: Alignment results by Zimmer et al . [17], Right:
Our alignment results.

RMSE in Fig. 10. We have also provide the comparisons
with sparse feature matching based method [41] denoted as
F. Init (before global nonlinear optimization) and F. Bundle
(after global nonlinear optimization). We note that RASL
shows unnaturally large errors in the experiments. Upon
careful investigation, we found that results in RASL were
biased by the large saturation regions where RASL tried to
find the transformation that minimize the effects of the satu-
rated regions by shrinking the area of saturated regions. As
discussed previously, the nuclear norm solution in RPCA
not only try to find a low-rank solution, but it also try to
find a solution that minimizes the magnitude of entries
in the recovered low-rank matrix. This problem is more
significant when there is limited number of observations
which caused the bias in their estimation. In contrast, our
approach does not have this bias. Comparing to F.+Bundle,
our approach achieves lower RMSE, since our measurement
is per-pixel based.

We show an alignment result on a real world example in
Fig. 11. The input images are from Zimmer et al. [17]. Our
alignment is accurate and robust to illumination changes.
Compared to the pixelwise optical flow alignment by Zim-
mer et al., our method utilizes a parametric transforma-
tion. Thus, if the camera movement violates our model,
our alignment may contain blurriness as illustrated in the
sky region in Fig. 11 (Bottom). In contrast, if our model
assumption is satisfied, our registration result will be better
than Zimmer et al. as illustrated in Fig. 11 (Top). Note that
our alignment within the building region in Fig. 11 (Bottom)
is also more accurate than the alignment by Zimmer et al.
as shown in the zoom-in regions.
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(h)

Fig. 13: Comparison of HDR results with other methods on the Arch dataset [5]. (a) Debevec and Malik [2]. (b) Mertens et al . [55]. (c) Gallo et al . [5]. (d)
Photoshop CS6. (e) Heo et al . [7]. (f) Hu et al . [18]. (g) Sen et al . [25]. (h) Lee et al . [28]. (i) Ours (MC-OURS). Error regions are highlighted. No user input
is required for this example.

Fig. 14: Comparison of HDR results with other methods on Arch dataset [5]. (a) Photoshop CS6. (b) Heo et al . [7]. (c) Hu et al . [18]. (d) Sen et al . [25]. (e)
Lee et al . [28]. (f) Ours (MC-OURS). Mertens et al . [55] and Gallo et al . [5] do not have results for moving objects inclusion. Error regions are highlighted.

(a) (b) (c) (d) (e)
Fig. 12: Comparisons of decomposition results to latent background A and
outliers E from RPCA [38] and our method (RPCA-OURS). (a) Two sampled
input images. (b,c) Low-rank A and sparse outlier E obtained by RPCA.
(d,e) Low-rank A and sparse outlier E obtained by our method. Absolute
magnitude of E is shown.

4.2.2 Background Decomposition

We evaluate the accuracy of background modeling to reject
outliers caused by moving objects. In this evaluation, the in-
put LDR images are well aligned. We compare our method
(RPCA-OURS) with RPCA [38] which minimizes nuclear

norm to decompose low-rank background and sparse out-
lier moving objects. The Arch dataset [5] is used in this
evaluation, and the decomposition results are reported in
Fig. 12. Ideally, the decomposed background (low-rank ma-
trix A’s) in (b) and (d) should have similar intensities with
inputs in (a) where moving objects or saturated regions
are removed. However, the decomposition results by RPCA
show darker background because nuclear norm implicitly
favors a solution with smaller magnitude, and there are
not enough input images to support large magnitude. In
comparisons, our result does not have this problem and
can correctly separate background and moving objects.

We provide self-comparison between RPCA-OURS and
MC-OURS in Fig. 2. Our results in MC-OURS is more
accurate because it explicitly handles saturations as missing
values. While our results in RPCA-OURS are biased by
the large saturated regions which covers half number of
input images. The saturation regions violate the sparsity
assumption which causes errors in RPCA-OURS. With user
specified masks (Red masks), MC-OURS can also be used to
include moving objects explicitly in the recovered low-rank
matrix. If sparsity assumption about moving objects and
saturations are satisfied, and there is no user specified mask,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 6, JUNE 2015 11

Fig. 15: Comparison of HDR results with Photoshop CS6. Left: Photoshop
CS6, Right: our results (MC-OURS, no user mark-up). Top: Sampled input
LDR images out of 6 input images.

the results from RPCA-OURS and MC-OURS are almost
identical.

4.2.3 HDR Reconstruction

We evaluate and qualitatively compare our HDR results
with results from previous methods. In Fig. 13, our result is
compared with Debevec et al. [2], Mertens et al. [55], Gallo et
al. [5], Photoshop CS6, Heo et al. [7], Hu et al. [18], and Sen et
al. [25]. The Arch dataset [5] is used for comparisons. Our
result is generated using MC-OURS algorithm without user
markups. As shown in Fig. 13, ghost-artifacts appear in the
results of both Debevec and Malik [2] and Mertens et al.
[55] algorithms since their algorithms were not designed
to handle moving objects. The results in other algorithms
can successfully remove ghosting from moving objects.
However, as noted in the highlighted regions, the results
of Gallo et al. [5] and Photoshop CS6 contain blending
artifacts. The result of Heo et al. [7] has halo artifacts. The
results of Hu et al. [18] and Sen et al. [25] contain patches
misalignment artifacts especially in the dark regions. In con-
trast, our result does not have the aforementioned artifacts.
Note that no user input is required to produce our result
in this example.

We further compare the results with moving objects
inclusion in Fig. 14 using the same Arch dataset [5]. In this
example, our moving object mask is detected automatically
by using the detected outlier regions (excluding saturation
and under-exposed regions) in the fourth reference images
as described in Sec. 3.6. The result from Heo et al. [7]
appears to have ghost artifacts in the included moving
objects (background texture appears in the moving objects).
The result from Sen et al. [25] performs well in moving
objects inclusion, but shows artifacts in dark regions due to
mismatch of patches. We additionally compare the perfor-
mance of our method and Photoshop CS6 on a real world
dataset captured by ourselves in Fig. 15. Serious artifacts
appear in the results from Photoshop CS6.

We have also further compare our results with results
from Sen et al. [25] and Hu et al. [18] in Figs. 16 and 17.
They are regarded as the recent state-of-the-art methods
specifically designed for moving objects handling in HDR
reconstruction. Both methods are based on patch matching
to enhance HDR reconstruction of moving objects since
global transformation cannot perform well to match mov-
ing objects. As shown in Fig. 16, when there are mismatches,
especially for regions that are challenging for local patch
matching, artifacts are produced as shown in the result

Fig. 16: Comparison of HDR result on the SculptureGarden dataset [5] with
(a) Sen et al . [25], (b) Hu et al . [18], (c) Lee et al . [28] and (d) our method
(No user mark-up.). The same tone-mapping is applied. In zoom-in views,
we increased contrast by 30 percents for better visualization.

(a) Photoshop CS6 (b) Sen et al . [25]

(c) Hu et al . [18] (d) Ours

Fig. 17: SantasLittleHelper [25]. (Top) Illustration of our MC approach in
this example. Four pseudo LDR results out of seven are shown. (Bottom)
Reconstructed HDR images. Although our method reconstructs details of
the moving object from a single LDR image, the quality is as good as the
results from Sen et al . and Hu et al . that apply patch matching to merge
details of the moving object from different LDR images. The amount of user
inputs for our result are described in Sec. 3.6.

of Sen et al. The results of Hu et al. are more stable,
but we also observe color degradation due to mismatch
on saturation region as shown in Fig. 17. In comparison,
although our approach uses details from a single image
to recover HDR image of moving objects using matrix
completion, our recovered details within the moving objects
are as good as the results from Sen et al. and Hu et al. as
shown in Fig. 17. However, our approach can effectively
eliminate the possibility of mismatch artifacts. For reference,
we also show our reconstructed pseudo LDR images using
the example provided by Sen et al. in Figs. 17.

Finally, we compare our result with a result from Grana-
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Fig. 18: Acrobat [27]. (a) Granados et al . [27]. (b) Lee et al . [28]. (c) Ours (MC-OURS). Top Right: 3 input LDR images are shown. The red box region is
enlarged for comparison. (d-g) Zoomed-in view of an input LDR image and the results of the three compared methods in same order. The amount of user
inputs for our result are described in Sec. 3.6.

dos et al. [27] in Fig. 18. The work from Granados et al. is
designed to handle ghosting in HDR reconstruction. Instead
of using patch match, Granados et al. use noise statistics to
match regions across different dynamic range to composite
an HDR image. We apologize that we cannot provide
comparisons with results from Granados et al. in the pre-
vious examples since we do not have their executable.
As shown in Fig. 18, our approach demonstrates a high
quality HDR reconstruction that is as good as the result
from Granados et al. Because user control is allowed, our
approach can produce the result that is more semantically
accurate such as the shadow region shown in Fig. 18-(e,g).

5 CONCLUSION

In this paper, we have presented a rank minimization
framework for the HDR reconstruction problem. Our ap-
proach is based on the rank-1 structure of LDR images
derived from image acquisition process. By assuming linear
CRF, image intensities in LDR images are linearly propor-
tional to the scene radiance which forms a rank-1 matrix of
LDR images. Using the rank-1 property, we have derived a
rank minimization algorithm which simultaneously regis-
ters, and removes sparse outliers such as moving objects in
LDR images. Since the conventional nuclear norm RPCA so-
lution is not robust to limited number of inputs, especially
for the HDR reconstruction problem where very limited
number of input images are captured, we introduced the
objective function based on the partial sum of singular
values.

Our partial sum formulation demonstrates better HDR
reconstruction than the nuclear norm formulation, and it
is not biased by the magnitude of reconstructed HDR
while the nuclear norm formulation favors small magnitude
solutions. To this end, we have also extended our rank
minimization framework to the matrix completion frame-
work. Our matrix completion algorithm allows a user to
specify masks to include particular moving objects in the
reconstructed HDR image. This is achieved by considering
the corresponding pixels in other LDR images as missing
values.

Our proposed algorithms have been evaluated exten-
sively on different challenging benchmark HDR datasets,
and have demonstrated better performance compared with
state-of-the-art HDR reconstruction algorithms. As future
work, we are planning to study how to extend our method
in other HDR problems, such as HDR panoramas or HDR
video reconstruction.
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[46] A. Srikantha and D. Sidibè, “Ghost detection and removal for high
dynamic range images: Recent advances,” Signal Processing: Image
Communication, vol. 27, no. 6, pp. 650–662, 2012.

[47] E. J. Candès and T. Tao, “The power of convex relaxation: Near-
optimal matrix completion,” Information Theory, IEEE Transactions on,
2010.

[48] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational mathematics, 2009.

[49] A. Ganesh, Z. Lin, J. Wright, L. Wu, M. Chen, and Y. Ma, “Fast algo-
rithms for recovering a corrupted low-rank matrix,” in Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2009.

[50] K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm
for nuclear norm regularized linear least squares problems,” Pacific
Journal of Optimization, 2010.

[51] “Photomatrix,” Commercially-available HDR processing software. http://
www.hdrsoft.com/ .

[52] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Ssstrunk,
“Slic superpixels compared to state-of-the-art superpixel methods,”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 34, no. 11, pp. 2274–2282, 2012.

[53] L. Wu, A. Ganesh, B. Shi, Y. Matsushita, Y. Wang, and Y. Ma, “Robust
photometric stereo via low-rank matrix completion and recovery,” in
ACCV, 2011.

[54] “http://www.hdrlabs.com/sibl/archive.html.”
[55] T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion: A simple

and practical alternative to high dynamic range photography,” in
Computer Graphics Forum, vol. 28, no. 1. Wiley Online Library, 2009,
pp. 161–171.

Tae-Hyun Oh received the B.E degree (summa cum
laude) in Computer Engineering from Kwang-Woon
University in 2010, and the M.S degree in Electrical
Engineering from KAIST in 2012. He is currently
working towards the Ph.D. degree at KAIST, South
Korea. He was a visiting student in the Visual Com-
puting Group, Microsoft Research Asia. He was
a recipient of Gold prize of Samsung HumanTech
Thesis Award and Qualcomm Innovation Award. His
research interests include robust computer vision
and machine learning. He is a student member of

the IEEE.

Joon-Young Lee received the B.S degree in Electri-
cal and Electronic Engineering from Yonsei Univer-
sity, Korea in 2008, and the M.S degree in Electrical
Engineering from KAIST, Korea in 2009. He is cur-
rently working toward the Ph.D. degree in Electrical
Engineering at KAIST. His research interests include
photometric methods in computer vision, image en-
hancement, and computational photography. He is a
recipient of the Samsung HumanTech Paper Award
and the Qualcomm Innovation Award. He is a stu-
dent member of the IEEE.

Yu-Wing Tai received the Ph.D. degree from the
National University of Singapore (NUS) in June
2009. He joined the Korea Advanced Institute of
Science and Technology (KAIST) in Fall 2009. He
regularly serves on the program committees for the
major Computer Vision conferences (ICCV, CVPR
and ECCV). His research interests include computer
vision and image/video processing. He is a senior
member of the IEEE.

In So Kweon received the BS and MS degrees in
mechanical design and production engineering from
Seoul National University, in 1981 and 1983, respec-
tively, and the PhD degree in robotics from Carnegie
Mellon University, 1990. He is now a professor at
KAIST. He is a recipient of the best student paper
runner-up award at CVPR 09’. He was the program
chair for ACCV 07’ and is the general chair for ACCV
12’. He is also on the editorial board of the IJCV.


