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Abstract

In this paper, we present a novel multi-image motion
deblurring method utilizing the coded exposure technique.
The key idea of our work is to capture video frames with
a set of complementary fluttering patterns to preserve spa-
tial frequency details. We introduce an algorithm for gen-
erating a complementary set of binary sequences based on
the modern communication theory and implement the coded
exposure video system with an off-the-shelf machine vision
camera. The effectiveness of our method is demonstrated on
various challenging examples with quantitative and quali-
tative comparisons to other computational image capturing
methods used for image deblurring.

1. Introduction
Image deblurring is a challenging task that is inherently

an ill-posed problem due to the loss of high frequency infor-
mation during the imaging process. In the past decade, there
have been significant developments in the image deblurring
research that improve the performance over the traditional
deblurring solutions such as Richardson-Lucy [29, 23] and
Wiener filter [42].

One research direction that has gained interest is to use
multiple blurred images for deblurring, which shows bet-
ter performance over the single image deblurring methods
in general due to the complementary information provided.
Yuan et al. used a blurred/noise image pairs to estimate the
blur kernel [43], Cai et al. proposed to use multiple sev-
erly motion blurred images [4], and Chen et al. performed
an iterative blur kernel estimation and a dual image deblur-
ring [6]. Cho et al. [7] presented a video deblurring ap-
proach that uses sharp regions in a frame to restore blurry
regions of the same content in nearby frames. In [32, 33],
motion blur in a video is reduced by increasing the frame-
rate for temporal super-resolution.

Another development in the image deblurring research
is to modify the way images are captured to make the de-
blurring problem more feasible. In [21, 20, 28], videos are
captured by modulating each pixel independently by binary
patterns, which enables the recovery of high temporal reso-

lution. On the other hand, this paper is particularly related
to the works that employ imaging systems that control the
exposures for the whole image, not on the pixel level, during
image captures. In [27], Raskar et al. presented the coded
exposure photography that flutters the camera’s shutter open
and closed in a special manner within the exposure time
in order to preserve the spatial frequency details, thereby
enabling the deconvolution problem to become well-posed
(Fig. 1(a)). Jeon et al. [14] improved deconvolution perfor-
mance by computing optimized fluttering patterns.

Instead of the fluttering shutter within a single expo-
sure, Agrawal et al. [2] proposed a varying exposure video
framework which varies the exposure time of successive
frames (Fig. 1(b)). The main idea is to image the same ob-
ject with varying PSFs (Point Spread Functions) by varying
the exposures so that the nulls in the frequency component
of one frame can be filled by other frames, making the de-
blurring problem well-posed. Holloway et al. [12] applied
the concept of coded exposure into a video camera. This
approach captures a series of coded exposure images with
different fluttering patterns in successive frames and per-
form temporal resolution upsampling via compressed sens-
ing. As mentioned in [12], this approach cannot handle
scenes without the spatio-temporal continuity and requires
many observations for estimating an object motion.

In this paper, we propose a coded exposure video scheme
which combines the benefits of the coded exposure imag-
ing [27, 14] and the varying exposure video [2]. Rather
than varying the exposures between the frames, we capture
a video under a fixed exposure time and apply the coded
exposure on each frame (Fig. 1(c)). To minimize the fre-
quency information loss during the image capture, we in-
troduce a method for generating a complementary set of
fluttering patterns that compensate for the losses in succes-
sive frames. By using the complementary sets of fluttering
patterns, we can generate various exposure time sequences
for a flexible frame rate capture and achieve higher quality
deblurring results with improved SNR compared to the pre-
vious methods. In addition, we show our framework can be
applied to other application such as the privacy protection
for video surveillance by adding intentional blur [19].
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Figure 1. Comparisons of different computational imaging techniques for image deblurring. (a) Coded exposure imaging [27]. (b) Varying
exposure video [2]. (c) Proposed coded exposure video.

2. Complementary Set of Sequences and
Coded Exposure

The key idea of this paper is to capture video frames with
a set of fluttering patterns that compensate frequency losses
in each frame, so that the captured images preserve spatial
frequencies. To generate such fluttering patterns, we intro-
duce a complementary set of binary sequences [38], which
is widely used in many engineering applications such as the
multiple-input multiple-output (MIMO) radar and the code
division multiple access (CDMA) technique [35]. In this
section, we theoretically show the advantage of the coded
exposure video with the complementary set of fluttering
patterns over the coded exposure imaging [27, 14] and the
varying exposure video [2].

2.1. Coded Exposure Imaging vs. Coded Exposure
Video

In [27], it has been shown that a fluttering pattern with a
flat spectrum improves the quality of the deblurring in the
coded exposure imaging. To measure the flatness, they use
the sum of an autocovariance function of a fluttering pattern.
It is also shown in [14] that an autocorrelation function of
a binary sequence can be approximated by an autocovari-
ance function. With a binary sequence U = [u1, · · · , un] of
length n, the relationship between the autocorrelation and
the modulated transfer function (MTF : a magnitude of fre-
quency response of binary sequence) via the Fourier trans-
form of the sequence is derived as ([13])

n−1∑
k=1

Ψ2
k =

1

2

∫ 1

0

[
|F(U)|2 − n

]2
dθ, (1)

where F(U) represents the Fourier transform of the se-
quence U . Ψk denotes kth element of the autocorrelation
function Ψ of the sequence, which is defined as

Ψk =

n−k∑
j=1

ujuj+k. (2)

In [14], it is shown that a smaller value of Eq. (1) reflects
higher merit factor, which in turn results in better deblurring
performance. Ukil proves in [39] that the minimum value
of Eq. (1) is bounded by n/2.

In our coded exposure video framework, a complemen-
tary set is defined as a set of binary sequences where the
sum of autocorrelation functions of the sequences in the set
is zero. If we have a complementary set ∆ consisting of
p(≥ 2) sequences {U1, · · · , Up} of length n, the relation-
ship is denoted as

p∑
i=1

Ψi
k = 0 s.t. k 6= 0, (3)

where Ψi
k denotes kth element of the autocorrelation func-

tion Ψ of the ith sequence in ∆.
It is shown in [34] that a complementary set ∆ is com-

puted by minimizing

n−1∑
k=1

|
p∑
i=1

Ψi
k|

2
=

1

2

∫ 1

0

[
p∑
i=1

|F(Ui)|2 − pn

]2
dθ. (4)

In the optimal case, the minimum value of Eq. (4) becomes
zero from Eq. (3). This means that the joint spectrum of a
complementary set has flatter spectrum than that of a single
binary sequence (coded exposure imaging) since Eq. (1) is
bounded to n/2 for a single binary sequence as mentioned
above. We estimate a spectral gain of one example comple-
mentary set of sequences using a numerical measure, pro-
posed by Tendero et al. [37], and the gain of the sequence
set is 0.85 while the gain of an optimal snapshot of a single
coded pattern is 0.56.

2.2. Performance Invariance to Object Velocity

When the object moves over a range of n pixels dur-
ing a shot, the optimal length of a fluttering pattern U =
[u1, · · · , un] is n. As demonstrated in [24], if the ob-
ject moves twice as fast, the effective PSF is stretched



1
2n [u1, u1, · · · , un, un] and the invertivility of the PSF can-
not be guaranteed.

We show that complementary set of sequences mini-
mizes the loss of spectral information even when the effec-
tive PSFs are super-sampled or stretched due to the velocity
of an object. As an example, we derive the change of MTF
due to a stretched sequence by a factor 2:

bi =

2n−i−1∑
j=0

U2nU2n(j + i)

=

n−q−1∑
p=0

[U2n(2p)U2n(2p+2q)+U2n(2p+1)U2n(2p+2q+1)]

=

n−q−1∑
p=0

[Un(p)Un(p+ q) + Un(p)Un(p+ q)] = 2Ψk,

where j = 2p and i = 2q. (5)

The variance of MTF of the stretched PSF is constant times
bigger than the PSF as follows:

n−1∑
i=1

bi = 4

n−1∑
k=1

Ψk
2 = 2

∫ 1

0

[|F(Un)|2 − n]2dθ. (6)

As mentioned in Sec. 2.1, the optimal bound of
1
2

∫ 1

0
[F(Un)− n]dθ in the complementary set of sequences

is theoretically zero. Thus, the optimal bound of the deci-
mated PSF also become zero. In practice, because our set
of sequences is close to the optimal bound, the proposed
complementary set can handle the velocity dependency is-
sue and it can be shown for the case of any factor. Our sys-
tem’s robustness to the object velocity is also demonstrated
in the Experiments Section.

2.3. Varying Exposure Video vs. Coded Exposure
Video

To compare our coded exposure video framework with
the varying exposure video [2], we analyze the upper bound
of MTFs for these two methods. The main criteria for the
comparisons are the variance, the minimum, and the mean
of MTF. As shown in [27, 25], the MTF of a binary se-
quence in coded exposure photography has a direct impact
on the performance of image deblurring. The variance and
the mean of MTF are related to deconvolution noise, and
the peakiness of the spectrum has an ill effect on deblur-
ring since it destroys the spatial frequencies in the blurred
image.

The MTF of the varying exposure method [2] is the joint
spectrum of different durations of rectangle functions in the
time domain (Fig. 2(b)). The upper bound of the joint MTF
Xvary of p varying exposures is derived as

|Xvary(ω)| =
p∑
i=1

|F(Π(li))| =
p∑
i=1

|
sin li

2 ω

sin ω
2

| ≤ | p

sin ω
2

|, (7)
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Figure 2. Joint MTF of each method and its theoretical upper
bound. (a) Varying exposure video [2]. (b) Different fluttering
patterns by random sample search [27]. (c) The proposed method
by complementary set of fluttering patterns.

where Π(l) denotes a rectangle function of length l, and ω
is a circular frequency at [−π, π].

To compute the upper bound for the coded exposure
video, let Φ denote a binary sequence of +1’s and −1’s.
Parker et al. [26] showed that the sum of all the Fourier
transform components of a complementary set of p se-
quences Φi, i = [1, · · · , p] of length n is at most

√
pn.

Since a fluttering pattern in the coded exposure imaging is
made of +1’s and 0’s due to its physical nature, the upper
bound of the joint MTF Xcomp of a complementary set is
computed as

|Xcomp(ω)| = 1

2

p∑
i=1

|F(Φi + Π(n))| (8)

≤ 1

2

p∑
i=1

|F(Φi)|+
1

2

p∑
i=1

|F(Π(n))| ≤ 1

2

√
pn+ | p

2 sin ω
2

|.

Fig. 2 compares the joint MTF of the varying exposure
video and the coded exposure video with the theoretical up-
per bound in Eq. (7) and Eq. (8). For the varying exposure
video in (a), the exposure lengths of [30, 35, 42] are used as
in [2]. For the coded exposure video, we use three random
sequences from [27] in (b) and our complementary set of
binary sequences in (c) which will be explained in the next
section. As can be seen in the figure, no null frequency is
observed at the MTFs of each coded pattern in the comple-
mentary set. This means that each single frame becomes
invertible as with the conventional coded exposure imaging
[27, 14]. In (b), the peaky spectrums of the random binary
sequences are moderated but the variance of the joint MTF
is still large. The peaky spectrums of each sequence in the
complementary set are well compensated by the joint MTF
(c), and the joint MTF (c) has much flatter and higher MTF
than the joint MTFs of both the varying exposure method
(a) and the set of the random sample sequences (b).

Theoretical upper bounds as well as the actual perfor-
mance measurements of the MTF properties for the varying
exposure video and the coded exposure video are plotted in
Fig. 3. To verify the effectiveness of the complementary
set of fluttering patterns, the random sample search method
in [27] is used to generate the binary sequences for single
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Figure 3. The theoretical upper bound and the actual performance
measurement of the varying exposure video and the coded expo-
sure video in terms of MTF properties.

image and three images cases. Although the MTFs of both
the coded exposure and the varying exposure do not reach
the lower (variance) and the upper bound (mean and mini-
mum), the coded exposure patterns shows better MTF prop-
erties than both the varying exposure method and the set of
random sequences. Specifically, the complementary set has
a jointly flat spectrum with higher mean and minimum MTF
value which are even better than the theoretical bounds of
the varying exposure method. This shows that the comple-
mentary set preserves spatial frequencies well by compen-
sating frequency losses in each frame. It is worth noting that
while utilizing all the sequences in a complementary set is
ideal in theory, utilizing a partial set of the complementary
set is also effective as shown in Fig. 2 and Fig. 3.

3. Coded Exposure Video

3.1. Hardware Setup

Constructing a hardware system for the coded exposure
video is not trivial. We implemented the coded exposure
video system using a Point Grey Flea3 GigE camera which
supports the multiple exposure pulse-width mode (Trigger
Mode 5) and a ATmega128 micro-controller to generate ex-
ternal trigger pulses (Fig. 4). The micro-controller sends
the binary sequence signal to the camera as external trig-
gers through the serial communication (step 1 in Fig. 4).
The camera finishes taking a photo after c number of peaks
in the sequence (gray area in the figure), which indicates
the end of a sequence (step 2). The camera then trans-
mits the image and the signal to the computer (step 3) and
the computer passes the parameter c of the next sequence
to the camera (step 4). This process is repeated again to
take a new set of images under a new sequence (step 1).
We used this system to capture both the varying exposure
video and the coded exposure video. Each shutter chop
is 1ms long and the frame rate is fixed at 5 frames per
second regardless of the sequence length due to the hard-
ware limitation. The implementation manual and the source
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Figure 4. Hardware Setup for the Coded Exposure Video.

code of our framework are released in our website https:
//sites.google.com/site/hgjeoncv/complementary sets.

3.2. Sequence Generation

In the coded exposure imaging, a fluttering pattern of a
camera shutter generally consists of a sequence longer than
20 bits, or even longer than 100 bits. Since the length of the
fluttering pattern may vary due to the illumination condition
or the object motion, it is beneficial to have a flexibility in
the length of the pattern. In this subsection, we introduce
a method for generating a complementary set of fluttering
patterns of flexible length.

Our strategy for obtaining the flexibility in the sequence
length is to generate the complementary set by expanding a
small-sized initial set that is known to be a complementary
set. Since the research in the complementary set construc-
tion has a long history, many known complementary sets
exist such as

∆ =

[
0 1
0 0

]
,

[
11101101
11100010

]
,


000010100100
001001111101
101000100011
001110010111

 ,
where ∆ denotes a complementary set in a matrix form. In
∆, each row vector represents one sequence and the set of
all row vectors is a complementary set.

From an initial complementary set ∆(p,n) which con-
sists of p sequences of length n, we can iteratively gener-
ate larger complementary sets [38]. With a complementary
set ∆, a new complementary set ∆1 with larger length se-
quence is obtained by

∆1 =

[
∆ ∆ ∆̄ ∆
∆̄ ∆ ∆ ∆

]
, (9)

where ∆̄ denotes the matrix with all the elements δs in ∆
flipped. After applying the expansion t times, we obtain a
complementary matrix ∆t ∈ R2tp×4tn, which contains 2tp
sequences of length 4tn.

Another option for generating variable length sequences
is to divide ∆ into two matrices with the same length as

∆ =
[

∆L ∆R

]
. (10)

https://sites.google.com/site/hgjeoncv/complementary_sets
https://sites.google.com/site/hgjeoncv/complementary_sets


In this case, both matrices ∆L and ∆R become comple-
mentary sets [10].

With the two matrix operations in Eq. (9) and Eq. (10),
we can generate a complementary set, whose size is 2tp ×
22tn or 2tp × 22t−1n. Since there are many well-known
initial complementary sets with various sizes, we can gen-
erate complementary sets with huge flexibility of sequence
length using the two methods.

In the video deblurring scenario, the required number of
sequences (or images) are usually limited to 2∼5 because it
is enough to compensate for the frequency losses and tak-
ing many pictures may create additional problems such as
the alignment and the field-of-view issue. Therefore, we
first generate a complementary set that fits with the required
sequence length, and then select the required number of se-
quences among many candidate sequences in the set.

As for the criteria for selecting sequences from the avail-
able set of sequences, we consider the number of open
chops. In general, the generated sequences have similar
number of open chops, e.g. n/2, however it could be
slightly different especially for short length sequences. In
this case, selecting sequences with equal number of open
chops can be an important criterion to avoid flickering be-
tween frames.

3.3. A Blurred Object Extraction and Deblurring

One practical issue with the coded exposure imaging
is to extract an accurate matte image for the moving ob-
ject deblurring. It is challenging because a blur profile be-
comes locally non-smooth due to the exposure fluttering.
Agrawal and Xu [1] proposed the fluttering pattern design
rules that minimize the transitions and maximize continu-
ous open chops, and showed that both criteria of PSF es-
timation [8] and invertibility can be achieved. In [36], a
blurred object is extracted from a static background with
user strokes in order to estimate motion paths and magni-
tudes. McCloskey et al. [25] presented a PSF estimation
algorithm for coded exposure assuming that the image only
contains a motion blurred object. In this paper, we deal with
this matting issue by jointly estimating the PSF, object mat-
ting, and the multi-image deblurring. We assume that the
images are captured from a static camera and a moving ob-
ject is blurred by a constant velocity 1-D motion.

Initialization To accurately extract the blurred object
(Fig. 5(a)), we first capture background images and model
each pixel of the background using a Gaussian mixture
model (GMM). When an object passes over the background,
we estimate an initial foreground layer by computing the
Mahalanobis distance between pixels of each image and the
background model. Since the estimated layers are some-
what noisy, we refine the layers by applying morphological
operations and make trimaps. Using the trimaps (Fig. 5(b)),
we extract the blurred object at each image via the closed
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Figure 5. Multi-image Deblurring Procedure

form matting [18].
After the object matting, we estimate the PSF of each

image based on the method in [25], which can handle the
cases of constant velocity, constant acceleration, and har-
monic motion. Specifically, we first perform the radon
transform and choose the direction with the maximal vari-
ance as a blur direction. This is because high spatial fre-
quencies of a blurred image is collapsed according to a blur
direction. Then, we compute matching scores between the
power spectral density of the blurred image and the MTF
of the fluttering pattern for various blur size. We deter-
mine the size of blur by choosing the highest matching
score. With this method, we estimate the blur kernel of
each coded blurred image independently (Fig. 5(c)). This
is useful because we do not suffer from the violation of the
constant motion assumption between frames that often oc-
curs in practice.

With the estimated PSFs, the captured images are de-
blurred independently. Then, we align all images by affine
matrix of the deblurred images using SIFT feature match-
ing [22], and merge all the captured images along with the
alpha maps (Fig. 5(d)).
Iterative Refinement After the initialization, we itera-
tively optimize between a latent image and the segmenta-
tion masks. Based on the merged image with the PSFs, we
perform a non-blind multi-image deblurring by minimizing
the following energy term:

argmin
Y

m∑
j=1

‖Bj −KjY ‖2 + λd‖∇Y ‖ρ, (11)

where Y is a latent deblurred image, ∇Y is the gradient
of the latent image, Bj is a set of linearly blurred images
captured by a set of PSF matrices Kj . λd is the smoothness
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Figure 6. The performance variations of the proposed method ac-
cording to the number of fluttering patterns used.

weight and m is the number of images. We set ρ = 0.8
for image deblurring [17] and ρ = 0.5 for the merged alpha
map deblurring α according to [36]. The deblurred alpha
map α is re-blurred to obtain a guidance alpha map α̂ which
is incorporated as a soft constraint in the close form matting
to refine the alpha map α for the moving object [16]:

argmin
α

αTLα+ λm(α− α̂)TD(α− α̂), (12)

where L is the Laplacian matrix of the closed form matting,
D is a diagonal matrix and λm is the weight for the soft
constraint.

With the refined alpha maps, we optimize the set of affine
matrices H that minimizes the energy function similar to the
stereo matching as follows:

argmin
H

m−1∑
j=1

{λa min(|Xref −HjXj |, τcolor)

+ (1− λa) min(|∇Xref −∇(HjXj)|, τgrad)},

where X is independently deblurred image and Xref is
the reference view. λa balances the color and the gradi-
ent terms, and τcolor, τgrad are truncation values to account
for outliers correspondences.

As shown in Fig. 5(f), our algorithm shows a promising
result of moving object deblurring in complex background.
The refinement is iterated 2 or 3 times for the final result
and takes 5 minutes for an image with 800×600 resolu-
tion in our MATLAB implementation. We empirically set
{λd, λm, λa, τcolor, τgrad} = {0.01, 0.1, 0.5, 0.3, 0.5}.
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image deblurring.

4. Experiments
To verify the effectiveness of the proposed method, we

perform both quantitative and qualitative comparisons with
other computational imaging methods; the coded exposure
imaging [27] and the varying exposure video [2]. For the
coded exposure method [27], we use a fluttering pattern of
length 48 generated by the author’s code1. The exposure se-
quences [30, 35, 42ms] stated in [2] is used for the varying
exposure method. The fluttering patterns of length 48 of the
proposed method is generated by applying Eq. (9) once to
the initial set 2.

4.1. Synthetic Experiments

For quantitative evaluations, we perform synthetic ex-
periments. As the synthetic data, we use 29 images down-
loaded from Kodak Lossless True Color Image Suite [30].
Image blur is simulated by the 1D filtering with different ex-
posure sequences generated by each method. To simulate a
real photography, we add the intensity dependent Gaussian
noise with the standard deviation σ = 0.01

√
iwhere i is the

noise-free intensity of the blurred images in [0, 1] [31]. The
peak signal-to-noise ratio (PSNR) and the gray-scale struc-
tural similarity (SSIM) [41] are used as the quality metrics.
For fair comparisons, we conduct parameter sweeps for im-
age deblurring and the highest PSNR and SSIM values of
each image/method are reported.

1www.umiacs.umd.edu/˜aagrawal/MotionBlur/SearchBestSeq.zip
2The initial set we used in this work is [000010100100; 001001111101;

101000100011; 001110010111]



(a) Coded Exposure [27] (b) Varying Exposure [2] (c) Proposed
Figure 9. Multiple objects deblurring with different velocities and directions. Blur size of the car (close) and the panel (far) (unit: pixel):
(a) 50 and 45. (b) [36 44 39] and [25 31 27]. (c) [46 50 52] and [35 38 44].

(a) A random sequences set (b) Proposed
Figure 8. Comparison of results using a random set and the pro-
posed complementary set when PSFs are stretched (Blur size : 96
pixels).

Fig. 6 reports the averaged PSNR and SSIM of the pro-
posed method according to the number of images used. We
can observe that better performance is achieved with more
images, however the performance gain ratio is reduced as
the number of images increases. The experiment shows that
utilizing three fluttering patterns is a good trade-off between
the performance gain and the burden of multi-image deblur-
ring for the proposed method. Therefore we use three flut-
tering patterns for the remaining experiments.

Quantitative comparisons of different methods are
shown in Fig. 73. For a complete verification, we addition-
ally consider two sets of coded exposure sequences gener-
ated by the random sample search [27]. Each set of three
sequences consists of the same fluttering pattern and three
different patterns, respectively. We include the two set of
sequences as baseline extensions of a single coded expo-
sure to coded exposure video. The proposed method out-
performs the previous methods for all the dataset, with large
margins especially in SSIM. This is because the proposed
method yields high-quality deblurring results while the pre-
vious methods fail to recover textured regions due to the
loss of high spatial frequencies. Fig. 1 shows examples of
the synthetic result. As shown in the figures, our method
outperforms the other methods both qualitatively and quan-
titatively.

3Here, we only report odd numbered dataset results due to limited page
space. All PSNR and SSIM values are reported in supplementary material.

(a) Coded Exposure (Blur size : 80 pixels) [27]

(b) Varying Exposure (Blur size : [60 67 75] pixels) [2]

(c) Proposed (Blur size : [80 80 82] pixels)
Figure 10. Outdoor Experiment

4.2. Real-world Experiments

In Fig. 8, we show an empirical validation of the per-
formance issue discussed in Sec. 2.2. We captured a reso-
lution chart in a carefully controlled environment, and the
chart moved two pixels during one exposure chop. We com-
pare our complementary set with a set of randomly gener-



Worst (SSIM=0.34) Worst (SSIM=0.82) Worst (SSIM=0.98)

(a) Random sets (b) MURA (c) Proposed

Figure 11. Privacy-protecting video surveillance

ated fluttering patterns. As shown in Fig. 8, when PSF is
stretched, the deblurred image captured by the random se-
quence set has noticeable artifacts around edges. On the
other hand, the proposed complementary set preserves de-
tails on the resolution chart well.

Fig. 9 shows the results of deblurring multiple ob-
jects with different velocities. To segment each object
trimap separately, we performed multi-label optimization
via graph-cuts [3]. Then, each object was deblurred and
pasted onto the background independently. In Fig. 9, one
object is highly textured and moving fast, while the other
one is lowly textured and moving slow. The proposed
method shows the best results compared to other deblurring
methods.

We then performed another real-world experiment in
outdoor by capturing a fast moving object as shown
in Fig. 10. The motion direction and the blur kernel is es-
timated automatically in the complex background that has
similar color as the moving car. Once again, our coded ex-
posure video scheme outperforms the other two methods.

4.3. Application to a privacy protection method for
video surveillance

The privacy protection for video surveillance has be-
come an important issue recently as the video surveillance
has become a commonplace. Various attempts have been
made to address the issue in computer vision [40, 5] and an
interesting study is the use of a coprime blur scheme, which
strategically blurs surveillance videos for privacy protec-
tion [19].

The coprime blur scheme encrypts video streams by ap-
plying two different blur kernels which satisfy coprimality,
and forms a public stream and a private stream. An un-
blurred stream can be recovered by a coprime deblurring
algorithm when both the private and public streams can be
accessed. Since it is very difficult to apply blind deconvolu-
tion with only a public stream, the privacy in video streams
is protected and higher level of security can be achieved by
choosing different blur kernels for each frame. In [19], Li et
al. synthesized the coprime blur kernels from two binary
sequences and presented an efficient deblurring algorithm.
They also highlighted the importance of constructing a bank

of blur kernels with flat spectrum because it directly affects
the security-level and the quality of recovered videos.

Our complementary sets of fluttering patterns can be di-
rectly applied to design the coprime blur kernels in the same
manner4. Because we can generate diverse sets of flut-
tering patterns with various lengths and flat spectrum, our
method is suitable to achieve both high-level security and
high-quality recovery.

We performed an experiment to show the effectiveness
of our framework applied to the coprime blur scheme. We
first generate a pair of coprime blur kernel by using the
modified uniformly redundant array (MURA) [11], and six
pairs of coprime blur kernels by using the random sample
search [27] and our complementary sequences. Then, we
encrypt the video5 by synthetically blurring each frame and
decrypt it according to the coprime method in [19]6.

Both the encryption and the decryption results by the co-
prime method are shown in Fig. 11. The first rows represent
encrypted frames with coprime blur kernels and the second
rows show the deblurred results. The coprime method con-
sistently produces high quality reconstruction results with
our complementary sequences while it suffers from severe
artifacts in some cases when other sequences are used7.
This is because the random sample search fails to gener-
ate good sequences with long length due to the large search
space as discussed in [14] and the MURA includes deep
dips that result in spectral leakage as shown in [27]. On
the other hand, our complementary sequences are able to
produce good sequence pairs with various length and sets.

5. Conclusion
In this paper, we introduced a novel coded exposure

video framework for multi-image deblurring. The proposed
method essentially combines the coded exposure imaging
and the varying exposure video, taking advantages of the
two methods to yield superior deblurring results. The limi-
tation of the current work is that we only solve for 1D linear
blur of a constant velocity object. Note that many real world
object motions such as a walking person or a moving car
result in 1D motion blur as mentioned in [27]. In addition,
affine blur from slanted blurred scene can be interpreted as
a 1D motion blur problem [27]. In the future, we would like
to extend our method to overcome the current limitations
such as known background and linear motion assumptions
as well as to apply our framework for multi-image super-
resolution and visual odometry for robotics.

4According to [15], two different sequences are generally coprime. To
verify the coprimality of complementary pairs of sequences, we generated
120 complementary pairs of sequences of length 256 and confirmed that
all the pairs satisfy the coprimality by the Euclid’s algorithm [9].

5dataset: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
6We used the deblurring code by the author to decrypt the video -

http://fengl.org/publications/
7The corresponding video is available on supplementary material.

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://fengl.org/publications/
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