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Abstract - We present a motion deblurring framework
for a wheeled mobile robot. Motion blur is an inevitable
problem in a mobile robot, especially side-view cameras
severely suffer from motion blur when a mobile robot
moves forward. To handle motion blur in a robot, we de-
velop a fast motion deblurring framework using the con-
cept of coded exposure. We estimate a blur kernel by a
simple template matching between adjacent frames with
a motion prior and a blind deconvolution algorithm with
a Gaussian prior is exploited for fast deblurring. Our sys-
tem is implemented using an off-the-shelf machine vision
camera and enables us to achieve high-quality deblurring
results with little computation time. We demonstrate the
effectiveness of our system to handle motion blur and val-
idate it is useful for many robot applications such as text
recognition and visual structure from motion.
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1. Introduction

Motion blur is a common problem of a vision-based
mobile robot. Motion blur degrades a performance of
vision-based algorithms such as visual path following [7],
visual SLAM [20], and visual odometry [9] because of
negative effects on feature detectors and tracking algo-
rithms. The goal of motion deblurring is to recover a
sharp latent image from a motion blurred image, and
there are two approaches for motion deblurring that can
handle a blur problem for mobile robots.

The first approach is to utilize dynamics of mobile
robots for estimating its blur kernel. Kim and Ueda [11]
present a blur kernel estimation method from dynamics
of a camera positioning system. Fu e al. [6] present an
image degradation model for an inspection robot and use
a recurrent neural network to restore blurred images cap-
tured by an inspection robot. Pretto et al. [15] propose
a feature detection and tracking algorithm robust to mo-
tion blur. They segment an image into several regions and
estimate blur kernels for each cluster separately.

The second approach is an indirect approach that re-
duces the blur effect. Anati et al. [19] present a soft ob-
ject detection method with a simple object detector and
a particle filter for localization. Their method is useful
to detect objects with occlusions and a partial blur for
a mobile robot. Hornung et al. [8] propose a learning
framework to determine navigation policy for a mobile
robot. They train the trade-off between localization ac-
curacy and the impact of motion blur on observations ac-

cording to mobile robot velocity. However, this approach
has a limitation that can only handle a small amount of
blur.

In computer vision, image deblurring is one of the
most active research fields. Traditional solutions to the
problem include Richardson-Lucy [18], [13] and Wiener
filter [24]. Recently, significant progress is accomplished
in image deblurring. Fergus et al. [5] present a variational
Bayesian framework by using a natural image statistics
as prior information of a latent image. Shan ef al. [21]
present a unified probabilistic model to estimate a blur
kernel and to suppress ringing artifacts in a deblurred im-
age. Xu and Jia [26] handle very large blur by selecting
useful edges for kernel estimation and by using an itera-
tive kernel refinement with an adaptive regularization.

There are many studies to use multi-blurred images for
deblurring. In [17], Rav-Acha and Peleg show better de-
blurring performance over single image deblurring meth-
ods due to the complementary information. Agrawal et
al. [2] show that 1-D motion blurred images captured
by different exposure times make deblurring to a well-
posed problem. Chan et al. [3] perform an iterative blur
kernel estimation and a dual image deblurring to infer a
latent image from complex motion blurred image pairs.
Though the multi-image deblurring methods show good
performances, computational time for the deblurring task
has made it difficult to apply into a mobile robot.

To change the way of image capture is in the lime-
light to tackle the deblurring problem. In [16], Raskar et
al. show impressive motion deblurring results by using
coded exposure. Coded exposure flutters a camera’s shut-
ter open and closed within the exposure time to preserve
spatial frequencies in a blurred image. The strength of
coded exposure is to achieve high-quality results through
simple operations as a matrix inversion. The drawback is
that it needs a high computational burden in a blur kernel
estimation [1], [14].

In this paper, we present a motion deblurring method
using the concept of coded exposure for a wheeled mobile
robot. We calculate an inter-frame motion by matching
image patches between adjacent frames and estimate a
blur kernel using the inter-frame motion. Our blur kernel
estimation is not only able to handle a linear directional
motion blur, but a simple projective blur. Our system is
implemented using an off-the-shelf machine vision cam-
era and leads us to achieve high-quality deblurring results
with little computation time. We validate the effective-
ness of our system to handle motion blur and show the
proposed method is useful for many robot applications



(a) Noisy image

(d) Deblurred image

(c) Denoised image

Fig. 1: An example of a motion blur in a mobile robot.
Both images (a,b) are captured from a moving mobile
robot under low light condition. (a) short exposure time
and high ISO sensitivity settings are used to avoid motion
blur and it amplify image noise. (b) Long exposure time
is used to prevent image noise and it cause severe motion
blur. (c) image denoising result of (a) using median filter,
(d) image deblurring result of (a) using Wiener deconvo-
lution (MATLAB).

such as characters and numbers recognition and visual
structure from motion.

2. Motion Blur in a Mobile Robot

Performance of most vision algorithms for a mobile
robot is particularly degraded under insufficient light con-
ditions. There are two options for handling such situ-
ations: (i) increasing a camera ISO sensitivity, which
results in amplification of photon noise, (ii) capturing
blurred images with long exposure time, which causes a
loss of image’s spatial frequencies.

Image restoration such as denoising and deblurring
is considered to take a full advantage of vision algo-
rithms. Though image restoration algorithms improve
image quality, it can cause another problems. Removing
noise destroys useful information as image’s edges and
a recovered image using deblurring often suffers from
ringing artifacts. In robot vision, the problems get worse
since it is infeasible to use high performance vision algo-
rithms for handling these problems due to a huge compu-
tational complexity. Fig. 1 shows an example of a motion
blur problem in a mobile robot.

In a wheeled indoor mobile robot, the robot usually
has a camera that is looking forward to the side for vision-
based tasks such as room number recognition and moves
along a side wall. In the situation, images from the side
camera are blurred by a directional motion and the blur
problem becomes severe while a robot moves fast. Mo-
tion of the robot can be considered as a constant velocity
because its camera exposure time is short enough to ig-
nore acceleration. In practice, most vision algorithms for
mobile robots such as visual SLAM and motion estima-
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(a) Conventional exposure (b) Coded exposure

Fig. 2: Comparison between conventional exposure
and coded exposure. (a) A poor deblurring result due to
non-invertible blur kernel, (b) Coded exposure shows a
good deblurring result.

tion assumes that velocity of robot motion in a short du-
ration is constant. Accordingly, we assume motion blur
in a wheeled mobile robot as a constant directional blur.

Our purpose is to recover a latent image with few ring-
ing artifacts and little computational burden for such a
wheeled indoor mobile robot. To achieve this, we apply
the concept of coded exposure to a mobile robot plat-
form, and present a blur kernel estimation using tem-
plate matching between consecutive blurry frames. Our
method is not only able to handle 1-D large blur kernels,
but cover a simple projective blur, which occur frequently
in indoor environments. We will describe details of our
solution in the next section.

3. Deblurring using Coded Exposure

Let B, K, and I denote a blurred image, a blur kernel,
and a latent image. We model motion blur as

F(B)=Z#()-Z(K)+N, (1

where Z is Fourier transform operator and N is additive
noise. Conventional camera exposure of a wheeled mo-
bile robot has a rectangular point spread function which
has many zero-crossing points in the frequency domain.
The zero-crossing points results in a loss of spatial fre-
quencies of a blurred image so that deblurring becomes
ill-posed as shown in Fig. 2 (a).

Coded exposure is developed by Raskar et al. [16]
to solve the ill-posed problem. Coded exposure opens
and closes a camera shutter during capturing an image.
It emulates invertible broadband blur kernels and makes
deblurring problem well-posed. As shown in Fig. 2 (b),
a deblurred image is robust to ringing artifacts and de-
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Fig. 3: Template matching procedure.

convolution noise even though the size of a blur kernel is
larger than the conventional capturing method.

3.1 Blur Kernel Estimation

In general, deblurring algorithms consume most of
computational time for a blur kernel estimation since the
kernel estimation is an iterative process that requires an
intensive computation. Such a huge computation is not
acceptable to a mobile robot platform in practice. In
contrast to a consumer camera setup, mobile robots cap-
ture sequential images that have considerable overlaps
between adjacent frames. The sequential images give
plenty of opportunity to solve the computational issue.
In this section, we describe a blur kernel estimation for a
wheeled indoor mobile robot.

In the existing coded exposure methods [1], [14], they
assume a 1-D linear blur kernel, which is not suitable for
mobile robots. We relax the assumption and consider a
blur kernel as a 2-D linear directional kernel. With a 2-
D linear direction kernel, we can handle various motion
blur from mobile robots since motion blur in a wheeled
mobile robot can be approximated as a linear direction
blur.

We compute a directional blur kernel using template
matching between consecutive blurred images. We find a
distinctive patch with high texture content in i th for ro-
bust template matching in Fig. 3 (a). To measure distinc-
tiveness of an image patch, we use the Sobel gradient op-
eration that requires little computational burden. At this
step, we select one patch with a maximized sum of mag-
nitude of gradient value in randomly distributed patches
in Fig. 3 (b). Then, we perform a template matching
based on normalized cross correlation, which finds the
most similar patch in i + 1 th frame in Fig. 3 (c). The
template matching initially searches into a horizontal di-
rection, and then refines matched point by applying 2-D
local search. The final blur kernel is computed by mul-
tiplying camera’s frame rate and the image-space robot
velocity (pixel/ms) obtained by the template matching
in Fig. 3 (d).

3.2 Non-uniform Blur in Slanted Scene

We apply image warping to handle non-uniform blur.
When the robot moves on the shortest path or avoids an
obstacle, side-view camera often faces the corridor wall
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Fig. 4: Handling a simple projective blur. (a) Input
image. (b) Deblurred result assuming spatially-invariant
blur kernel. (c) Deblurred result using Sec. 3.2

at a slanted angle. In that case, however, blurred im-
age has spatially-variant blur kernel due to depth varia-
tion. As shown in Fig. 4 (b) incorrect blur kernel result
in severe artifacts. Using the homography, we generate
fronto-parallel view of the wall so that the image has uni-
form blur size in that synthetic view.

The homography matrix H can be represented as fol-
lows:

H=KRK™! )

where K is camera intrinsic parameter, and R is ro-
tation matrix between image plane and the wall. Since
indoor mobile robot is our target, we assume only one
dimension camera rotation about Y-axis, which is yaw
rotation for a robot. Thus the rotation matrix R can be
written:

cos® 0 —sinB
0 1 0 (3)
sin@ 0 cos@

R

To estimate an angle 6, our strategy pass through pre-
diction and verification steps. In the prediction step, a
patch is selected by the similar process to deciding a
patch for blur kernel estimation. The two patches, how-
ever, have a gap in x-axis so that they have different blur
size in slanted scene. Then, the patch that we choose in
this step is warped by homographies considering the an-
gle of previous frame and constant angular velocity with
small variation. In the implementation, the range of small
variation is —5° to 5°. In the verification step, we eval-
uate gradient value of deblurring result for each warped
image. Then, the angle which has minimum gradient of



Fig. 5: Our mobile robot which is used for the exper-
iments. The robot captures images sequentially using a
side-view camera.

Method Software Computational
Time (sec)
Cho et al. [4] C++ )
Shan et al. [21] C++ 157
Xu and Jia [26] C++ 799
Proposed C++ 04

Table 1: Comparison of average computational times.
The size of input images is 640x480 and these algo-
rithms are executed on a desktop PC with Intel Core i7
CPU 3.40GHz and 16GB RAM. Compared algorithms
are distributed in Executable program based on C++

image is selected since ringing artifacts increase gradi-
ent value of an image. If an image has more uniform
blur size, then the image gets least ringing artifacts. As
shown in Fig. 4 (c), our well-approximated image warp-
ing is useful for tackling a simple projective blur, which
helps our technique to handle more various indoor situa-
tions.

4. Experiments

To validate the effectiveness of our method, we per-
form experiments on two robot vision tasks: character
recognition and structure from motion. Fig. 5 shows our
mobile robot, and all the images for experiments are cap-
tured from a camera mounted on the mobile robot We set
exposure time of the camera to 25ms for all experiments,
which gives a good trade-off between image noise and
motion blur for general mobile robots. Capturing time of
our coded exposure is 50ms due to fluttering of a camera
shutter during the exposure time. In presenting exper-
imental results, we begin by describing implementation
details.

4.1 Implementation

We implement a coded exposure camera using a ma-
chine vision camera, PointGrey Flea3, which is widely
used as a machine vision camera. Flea3 camera supports
a Trigger mode 5 that enables multiple pulse-width trig-
ger with a single readout. External trigger is generated
by an ATMegal28 microprocessor. Camera’s shutter is
opened at 0 to 1 transition and is held until the next 1 to

0 transition is occurred. For fluttering pattern 11001101,
for example, three triggers are sent at 0, 5, and 8 ms, and
shutter is opened for a duration of 2, 2, and 1 ms, respec-
tively. Each shutter chop is 1 ms long due to the hardware
limitation of a Flea3 camera. We use the state-of-the-art
fluttering patterns reported in [10] since a fluttering pat-
tern is closely related to the performance of coded expo-
sure deblurring [14].

Our algorithm is implemented using Visual Studio
2010 (C++ language) with Intel OpenCV library. Blurred
images are deblurred by using a non-blind deconvolution
method with Gaussian prior [12] if there is no statement
for a deblurring method. We choose the deconvolution
method since it is simple and computationally efficient.

4.2 Results and Discussion

We first compare computational time of our method
with other well-known blind deblurring algorithms,
[51,[21],[26],[23]. The methods [5],[21] [26] are single
image deblurring methods and [23] is a multi-image de-
blurring method. Computational time of the proposed
method includes our PSF estimation and the non-blind
motion blurring with Gaussian prior. We calculate the
elapsed time for deblurring one VGA resolution image
and the result is summarized in Table 1. In the result, we
can observe that our method is much faster than other al-
gorithms because we estimate PSF very efficiently while
other algorithms spend most computational time on PSF
estimations.

To demonstrate the qualitative performance of our
method, we show deblurring results in Fig. 6. In the
figure, odd rows show captured images and even rows
show deblurred results using our method and the state-of-
the-art deblurring method [26]. Results from the conven-
tional exposure imaging is displayed in (a,b) and results
from the coded exposure imaging is displayed in (c,d).
Results in (a,c) are deblurred using the method [26] and
results in (b,d) are deblurred using our method.

In Fig. 6, the method [26] fails to accurate PSF esti-
mation in (c) due to large blur. Results using the conven-
tional exposure (b) suffer from deconvolution noise and
ringing artifacts comparing to results using the coded ex-
posure (d), since the conventional exposure has a loss of
spatial frequencies of a blurred image. Results in (c) that
are deblurred using the method [26] have much deconvo-
lution noise and ringing artifacts than results in (d) that
are deblurred using our method, since the method [26]
fails to estimate accurate blur kernels due to large mo-
tion blur. On the other hand, result in (d) shows that the
proposed method that utilizes coded exposure with an ef-
ficient PSF estimation can recover high-quality images
robust to large motion blur.

To verify the effectiveness of our method as a cap-
turing tool for mobile robots, we perform characters and
numbers recognition using [22]. We crop text areas from
each deblurred results in Fig. 6 and put cropped images
into the recognition algorithm. The recognition results
are summarized in Table 2 and true positive recogni-
tion results are printed as bold strokes in the table. As
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(a) Conventional (w/[25]) (b) Conventional(w/Sec.1lI-A)

(c) Coded Exposure (w/[25])

(d) Proposed

Fig. 6: Qualitative comparison of deblurring results. (a) Conventional exposure with[26] fails to recover details and to
suppress deconvolution noise. (b) Conventional exposure with Sec. 3.1 results in ringing artifacts due to a loss of spatial
frequencies of the blurred images. (c) The method[26] fails to estimate accurate blur kernels. (d) The proposed method

shows promising deblurring results.

Conventional

Conventional

Coventional

Coded Exposure

Input Static (Blur) (w/ [26]) (w/Sec. 3.1) (w/ [26]) Proposed
illinois tllinbis - - - - -
VGP VGP VGP VGP Vi? - VGP
768 768 768 768 768 - 768
AUG AUG - - - Xi-1:35 -
Alabama Alabama T - - L. 21 -
61271 61271 61271 - 612Z1 - 61271
NATIONAL || NATIONAL - - TAHDINL - NATIONAL
GUARD GUARD 1937+ GUIRIT - GUARD

Table 2: Recognition results of characters and numbers from the deblurred images in Fig. 6.

expected, the recognition results from the proposed de-
blurred images outperform the others. This is because
the deblurred images of the others have ringing artifacts
and smeared regions that hamper a line finding, features
extraction, and classification of the recognition process
in [22].

Motion estimation and 3-D scene reconstruction in
mobile robots are challenging tasks when consecutive im-
ages are blurred since it fails to match image features
between blurred images. To show the performance im-
provement of such tasks using our framework, we per-
form experiments of structure from motion. Fig. 7 shows
reconstruction results. Our mobile robot captures 42 se-
quential blurred images as moving along a corridor. Since
the camera on the robot is looking toward a side-view, the
captured images contains large motion blur. We recover
images using deblurring, then we perform a well-known
visual structure from motion (VisualSFM) to reconstruct
the 3D model [25]. In this experiment, we capture im-

ages using both our coded exposure and the conventional
exposure, and we use ours blur kernel estimation for both
captured sequences. The deblurred images in Fig. 7 (a)
has ringing artifacts, which result in failures of feature
matching. On the other hand, there are few ringing arti-
facts in the deblurred images from our method in Fig. 7
(c). Due to the difference of deblurred image quality, The
result of our method in Fig. 7 (d) shows better reconstruc-
tion than the results in Fig. 7 (a).

5. Conclusions

We have presented a motion deblurring framework us-
ing coded exposure for a wheeled mobile robot. We have
analyzed the characteristics of motion blur in a mobile
robot and have designed an efficient deblurring frame-
work that is tailored to a wheeled mobile robot. With our
framework, we can recover high-quality images with lit-
tle computation time, therefore vision-based algorithms
become robust to motion blur especially under low light



(a) Conventional exposure

(b) Structure from motion result using (a)

(c) Proposed

(d) Structure from motion using (c)

Fig. 7: 3D reconstruction results using structure from motion. First row images of (a,c) are images captured by
conventional exposure and the proposed method, respectively. The images contains motion blur due to the motion of the
mobile robot. Second row images of (a,c) are deblurred images from consecutive blurred images. (b) and (d) are 3D
reconstruction results from the deblurred images in (a,c), respectively. White dots denote camera poses.



condition. The effectiveness of our system is validated on
text recognition and feature matching tasks.

In the current implementation, there is a limitation on
motion blur from dynamic scene which contains multiple
moving objects. The problem requires a huge computa-
tional complexity due to multiple blur models and addi-
tional weight variables. It can be handled by fusing our
system with 3-D depth sensor that can help simplify mul-
tiple blur model in the future .
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