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A time-of-flight camera provides depth maps of the scene at video frame rate. However, their depth
measurements are severely influenced by random noise and systematic bias. Previous approaches on depth
denoising are usually variants of adaptive joint bilateral filtering with the help of a color image of the same
scene. In this paper, we access to the raw range measurements of the ToF sensor instead of the transformed
depth values, and we acquire range error profile for each pixel along the range measurement by capturing a
planar scene at different distances. We correct the range bias using plane fitting and then the remaining noise
can be assumed to follow a zero-mean Gaussian distribution with variance according to the pixel location and
the range measurement. Since the whole process is done beforehand leaving variance information, any kind
of depth denoising algorithm assuming zero-mean Gaussian noise can perform well with our noise estimation.
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1. Introduction

Recently, depth sensors have become popular as the
sensors are getting cheaper and smaller. They are
widely used in computer vision community in the fields
of human-computer interaction (1), 3D reconstruction (2),
and robot navigation (3). A 3D time-of-flight (ToF) cam-
era is a type of depth sensors which modulates its illumi-
nation LEDs and measures the phase and the amplitude
of the returned signal with its CCD/CMOS imaging sen-
sor at each pixel. The new generation Kinect is known to
be installed with a ToF camera which has greater accu-
racy compared with the previous Kinect with structured
light (4).

Unfortunately, the depth measurement that a ToF
camera provides suffer from severe random noise and
systematic bias. Therefore depth denoising is essential
to improve the performance of further depth related ap-
plications. Many of previous approaches on depth de-
noising depends on the color image of the same scene
assuming an RGB-D input. They are usually variants
of adaptive joint bilateral filtering resort to the observa-
tion that edges in the color image usually coincide with
depth discontinuities (5) (6).

In this paper, we propose a noise aware depth denois-
ing for a time-of-flight camera without using any other
sensors. We handle the raw range measurements of the
ToF camera instead of the transformed depth values for
better accuracy. We acquire range error profile along the
range measurement for each pixel by capturing a planar
scene (e.g. a wall) at different distances. After range
bias correction, the remaining zero-mean noise is assume
to be Gaussian having a standard deviation according to
the location of the pixel and its range measurement.

We calculate a range standard deviatioin map of the
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scene and apply adaptive bilateral filter to show the ef-
fectiveness of the range error profile of a ToF camera
and to present its application on noise aware depth de-
noising.

2. Related works

In spite of providing a depth map in video rate, a time-
of-flight camera has its limitation on low accuracy and
low resolution. There have been several approaches to
improve the quality of the depth image of a ToF camera
in a modified way of traditional color image enhance-
ment methods.

Schuon et al. (7) adopts ideas from traditional color im-
age superresolution to be applied to ToF cameras in or-
der to obtain 3D data of higher X-Y resolution and less
noise. Chan et al. (5) increase the spatial resolution of
the range data using color information of a high resolu-
tion video camera. Yeo et al. (6) presents an upsampling
framework that jointly uses Gaussians of spatial and
depth differences of low resolution depth image along
with Gaussian of color intensity difference from high res-
olution 2D color image of the same scene. Frank et al. (8)

propose an adaptive filter for depth denoising of a ToF
camera by adjusting the level of smoothing using the
amplitude images as a measure of confidence.

Motivated by Liu et al. (9), who estimate an upper
bound on the noise level from a single image based on a
piecewise smooth image prior model and measured CCD
camera responce functions, we have focused on the char-
acteristics of the ToF camera to obtain a hint of its noise
behavior from the sensor as well as from the scene.

3. Range error profiles

The range measurements that a time-of-flight sensor
provides suffer from random noise and systematic bias.
The most crucial error source of a ToF sensor is formed
by a systematic wiggling error altering the measured dis-
tance by shifting the distance information significantly
toward or away from the sensor (10). The systematic wig-
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(a) All pixels (b) Cluster 1 (c) Cluster 2 (d) Cluster 3

Figure 1: (Top) Spatial distribution of the measurements. (Middle row) Range errors and the estimated B-spline
functions. (Bottom) Range error after correction. (a) Range bias correction of all the measurement using a single
B-spline function. (b-d) Three clusters (Cluster 1,2,3 in Table 1) of the measurements showing similar error profiles
and their corrections

gling error arises in the process of distance calculation
from the phase difference of the reference signal and the
returned signal of a ToF sensor. Due to hardware and
cost limitations, the theoretical assumption of a sinu-
soidal signal shape is generally not suitable in reality.
As a result, a range error appears as shown in Fig. 1.
Instead of modeling the range bias of all the measure-
ments using a single B-spline function, we focus on the
spatial distribution of the range error on the image plane
as well.

Range bias correction is important in enhancing the
quality of the 3D measurements of a ToF camera because
not only it reduces the error in range measurement but
also it removes the offset bias from the error to make the
error distribution more like a zero-mean gaussian. The
bias corrected depth becomes more suitable to depth
denoising applications.

To estimate the error of the range measurement, we
have captured a wall at different distances, making sure
that the wall is captured more than 30 times at each
distance. We have averaged those range measurements
to obtain a reliable representative frame of the wall at
each distance. We model the plane using SVD because
a large portion of the 3D measurement after ray correc-
tion is already highly accurate. We estimate the range
error as the distance between the 3D measurement and
the fitted plane along the ray.

Fig. 1 shows the range error along the measurement of
the different pixels on the image. The figure in the mid-

Table 1: RMS Error After Range Bias Correction [mm]
Before range bias correction 6.18

All pixels corrected together 6.12

with a single B-spline function (10)

Each cluster corrected separately (proposed) 3.80

Cluster 1 (Fig. 1(b)) 2.92

Cluster 2 (Fig. 1(c)) 5.61

Cluster 3 (Fig. 1(d)) 8.95

Cluster 4 3.72

Cluster 5 4.14

dle of the column (a) shows the range error profiles of all
the pixels. The error is wiggling along the range mea-
surement, showing a wide range of variance. Lindner et
al. (10) model this error using a single B-spline function.
Instead, we have applied k-means clustering to the error
data to classify them according to shape of fluctuation.
As a result, the wiggling errors are successfully divided
into a number of clusters, each of which having a similar
shape to be modeled by a single B-spline function. The
measurements in each cluster are radially distributed on
the image plane, as shown in the top row of Fig. 1. The
columns (b-d) show the three out of five (k = 5) clus-
ters of pixels’ spatial distribution of the measurements
and their corresponding range error profiles with the es-
timated B-spline functions.

The RMS errors before and after bias correction are
shown in Table 1. It is shown to be much more effective
when range error is corrected each cluster independently
than when corrected as a whole. The average RMS er-
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ror of spatially varying range bias correction is 3.80mm,
which is much less than that of a single function cor-
rection. Note that the small number of pixels on the
image boundary (Cluster 3) show large error compensa-
tion due to range bias correction. The range bias clearly
has a spatial distribution and it is more effective when
corrected by using different B-spline functions.

4. Depth denoising

Bilateral filtering (11) is a simple and popular algorithm
for edge-preserving and noise reducing smoothing filter
for an intensity or a color image. Generally, when a bi-
later filter is applied to a grayscaled intensity image, the
intensity value at each pixel in an image is replaced by
a weighted average of intensity values from nearby pix-
els. The weight depends both on Euclidean distance of
pixels and on the intensity(range) difference. Therefore,
the bilateral filter has two parameters, the spatial and
range standard deviations, σs and σr.

In our case, we have applied adaptive bilater filtering
to a depth image obtained by a time-of-flight camera.
We have applied a fixed value for the spatial standard
deviation σs = 3, whereas different values for the range
standard deviation. σr is determined adaptively for each
pixel according to the pixel location in the image and its
range measurement.

Given the range error profiles shown in Fig. 1, all the
pixels are classified into k clusters purely by its location
in the image as shown in Fig. 1(top). Given a frame
of range measurements Fig. 2(b,i), σr is determined for
each range measurement by the remaining variance of
the range error profiles after range bias correction shown
in Fig. 1(bottom). The resulting σr map for the scene
is shown in Fig. 2(c,j).

The results of adaptive bilateral filtering using
σr maps of the scenes are shown in Fig. 2(g,n).
Fig. 2(d,e,k,l) are the results of the same algorithm using
a fixed value for σr for comparison. Since σr tend to be
large for large range measurements and the pixels on the
image boundaries, a small fixed σr leaves noise on the
image boundaries and where the scene has a large depth
and a large fixed σr tend to oversmooth the scene in the
center. Frank et al. (8) tend to preserve details but leaves
some noise where the input depth is large. It shows
advantage in specular region rejection because it uses
the amplitude image of the ToF camera for confidence
measure. The proposed method shows effective noise
reduction while preserving depth discontinuities with-
out blurring edges. A similar level of edge-preserving
smoothing is present on the boundary of the image as
well as around its center.

5. Discussion and conclusion

We present noise aware depth denoising application on
a depth image of a time-of-flight camera using adaptive
bilateral filtering. The standard deviation of the range
measurement is adaptively determined according to the
scene and the sensor’s range error profiles. Given the
range error profiles and the range measurement of the
scene, the range standard deviation map is calculated

without the help of any other sensors. Since the range
standard deviation for a ToF camera is tend to be large
on the image boundaries and for the large range mea-
surements, the adaptive bilateral filtering is shown to be
effective in edge-preserving noise reduction for the entire
parts of the image.

We believe that this framework can be an advanta-
geous in further ToF camera related applications since
the actual field of view of a ToF camera is even smaller
with the pixels on the image corners providing much less
accurate range measurements. To enhance the quality
of its measurements, the range error profiles can be ob-
tained for each sensors beforehand and any depth de-
noising algorithms can be used to take advantage of the
error profile information
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(a) Color image of the scene (b) Original depth image (c) Adaptive σr map

(d) σr=1 (e) σr=5.5 (f) Frank et al. (8) (g) Adaptive σr

(h) Color image of the scene (i) Original depth image (j) Adaptive σr map

(k) σr=1 (l) σr=5.5 (m) Frank et al. (8) (n) Adaptive σr

Figure 2: Depth denoising results. (d,e,k,l) General bilater filtering results using the specified range standard devia-
tions. (g,n) The proposed method of adaptive bilteral filtering for a ToF depth image.
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