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Abstract. Binary features have received much attention with regard to memory
and computational efficiency with the emerging demands in the mobile and em-
bedded vision systems fields. In this context, we present a robust binary feature
using the intensity order. By analyzing feature regions, we devise a simple but
effective strategy to detect keypoints. We adopt an ordinal description and en-
code the intensity order into a binary descriptor with proper binarization. As a
result, our method obtains high repeatability and shows better performance with
regard to feature matching with much less storage usage than other conventional
features. We evaluate the performance of the proposed binary feature with vari-
ous experiments, demonstrate its efficiency in terms of storage and computation
time, and show its robustness under various geometric and photometric transfor-
mations.

1 Introduction

Finding correspondences between images is a fundamental step in many computer vi-
sion methods, such as object recognition, image retrieval, and wide-baseline stereo. The
key component of a correspondence search is to extract invariant image features, and
many computer vision researchers have focused on extracting invariant image features
based on their importance.

The main concerns with regard to invariant features are localization accuracy, in-
variance to geometric and photometric deformations, and distinctiveness to be correctly
matched against a large number of features. SIFT [1] and SURF [2] are known as the
best known and most widely used methods among all various image features. They find
scale-invariant distinctive image regions and represent local regions using feature vec-
tors which are invariant to rotation and illumination changes. The discriminative power
of SIFT and SURF has been validated in many computer vision techniques, and variants
of these methods are widely used for robust image representation.

Two other important factors pertaining to invariant features are time and space ef-
ficiency levels when detecting, matching, and storing features. Recently, demand has
increased for such efficient image features, as mobile and embedded vision systems are
emerging for visual searches [3] and for direct 2D to 3D matching [4, 5]. Also, for mo-
bile visual search applications, the amount of data sent over the network needs to be
as small as possible so as to reduce latency and lower costs. Several binary features,
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such as BRIEF [6], ORB [7], BRISK [8] have been developed to describe local image
regions with small binary strings which can be matched much faster with the Hamming
distance compared to SIFT. However, despite the effort and advances in this area, SIFT
has remained the best option for various deformation tasks apart from non-geometric
transforms [9].

In this paper, we aim to extract binary features with a method that can achieve
matching performance levels comparable to those of SIFT and SURF with even less
storage than that required for existing binary features. We apply FAST-like binary
tests [10] to reject non-feature regions quickly and present an efficient approximation
of the Determinant of the Hessian for robust feature detection with high repeatability.
Motivated by earlier work [11], we employ ordinal descriptions of local image measure-
ments for robust representations of feature regions. The ordinal description encodes the
rank order of each measurement and is therefore invariant to monotonic deformations of
the measurements. Also, an ordinal description is insensitive to moderate rank-order er-
rors, thus enabling the quantization of descriptions into small-sized binary descriptors
without a noticeable degradation in the performance. Experimental results show that
our feature outperforms other state-of-the-art binary features with fewer dimensional
descriptors in terms of repeatability and matching performance.

2 Related Work

2.1 Feature Detection

The first stage of image feature extraction is to detect interest points, which are known
as keypoints. Many feature extractors detect blobs or corners as keypoints because they
can be repeatedly detected despite the presence of various geometric and photometric
deformations. SIFT [1] convolves images with Gaussian filters at different scales and
approximates the Laplacian of the Gaussian using the Difference of Gaussians (DoG)
method. SIFT then detects blob-like areas as keypoints by taking the maxima and min-
ima of the Difference of Gaussians (DoG). Scale invariance is obtained from the scale
of DoG. Instead of using DoG, SURF [2] uses an approximated Determinant of Hes-
sian measure via box filters which are implemented efficiently using an integral image.
Harris corner [12] is the best known corner detector; it uses the second moment matrix,
also known as the auto-correlation matrix. Harris-Affine [13] introduces a multi-scale
version of Harris corner. FAST [14, 10] is one of the fastest keypoint detectors. FAST
is considered as a modification of SUSAN [15], demonstrating that a simple segment
test is enough to detect corner-like areas. AGAST [16] improves FAST with an adaptive
and generic accelerated segment test. CensurE [17] introduces a scale-invariant center-
surround detector. A simplified center-surround filter with an integral image is used for
efficiency, and non-features are removed by a Harris measure. FRIF [18] is a fast ap-
proximated LoG (FALoG) detector based on the Harris matrix. FALoG can be quickly
computed by means of factorization with an integral image while preserving the prop-
erties of LoG. BRISK [8] and ORB [7] use multi-scale FAST for scale-invariance and
efficiency. Inspired by SURF and FAST, we use a simple sampling pattern to measure
and classify features and non-features.
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2.2 Feature Description

A descriptor encodes the local image information around a keypoint. It is used to distin-
guish keypoints under various transformations. SIFT descriptor describes a local image
patch using a gradient histogram. It quantizes gradient orientations and accumulates
gradient magnitudes into an orientation histogram with eight bins over 4x4 sub-regions.
The form of the SURF descriptor is similar to that of the SIFT descriptor. Instead of
quantizing gradient orientations, the SURF descriptor computes a histogram with four
bins, dx, dy, |dx|, and |dy|. There are many SIFT variants, such as GLOH and DAISY.
GLOH [19] uses a polar arrangement of sub-regions and DAISY [20] uses a flower-like
spatial division for dense descriptions.

Because gradient-based descriptors can only deal with linear deformations, rank-
order-based methods have been proposed to handle more general non-linear deforma-
tions. Rank-order-based methods such as SIFT-Rank [11] and LUCID [21] encode rel-
ative order information rather than raw values such as the gradient and intensity. Wang
et al. [22] propose a Local Intensity Order Pattern (LIOP) to encode the local ordinal
information and create a histogram of the LIOP for each ordinal sub-region. Motivated
by these methods, we introduce a new binary descriptor using ordinal information.

In the computer-vision community, recent progress has shown that a simple bright-
ness comparison test is a good choice when attempting to generate a robust binary
descriptor. BRIEF [6] presents a binary feature using an intensity difference test and
demonstrates a high recognition rate with low computational complexity during the
feature construction and matching processes, though it is not designed to be rotation-
ally invariant. BRISK [8] is a combination of the scale-normalized FAST keypoint de-
tector and the BRISK descriptor. BRISK divides point pairs into two groups: long-
distance pairs and short-distance pairs. It calculates the characteristic pattern direc-
tion using long-distance pairs and computes the descriptor using intensity comparisons
of short-distance pairs after rotation- and scale-normalization. ORB [7] demonstrates
that the steered BRIEF loses discriminancy from rotation-normalization and introduces
rBRIEF, which uses a learning strategy to recover from the loss of variance in steered
BRIEF. The rBRIEF method demonstrates variance and correlation improvements over
the steered BRIEF. Inspired by the human visual system, FREAK [23] uses the learning
strategy of ORB with a DAISY-like sampling pattern [20]. For our feature description,
we apply a similar sampling pattern with BRISK, but we generate a binary string using
a different strategy based on the rank order.

3 Keypoint detector

For fast keypoint detection, previous binary features [6–8] adopt the FAST detector [10]
with modifications such as the scale-space feature and/or a Harris filter to obtain addi-
tional scale and rotation invariances. While these methods obtain very fast detection
results, they have relatively low repeatability levels compared to SIFT and SURF, as
will be shown in Sec. 5.1. Repeatability is one of the most important properties of a
keypoint detector for localization accuracy.
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Fig. 1. The proposed feature detection algorithm.

We introduce a new keypoint detection algorithm in an effort to improve the repeata-
bility. We apply a FAST-like binary comparison test and propose a keypoint measure to
balance computational efficiency and repeatability performance.

We initially analyze the tendencies of image patches and categorize these into six
types, homogeneous, edge, ridge, corner, blob, and blocked blob. Abstractive represen-
tations of the six types of local image regions are given in Fig. 1 (a). For repeatable
keypoint detection robust to image deformations, we detect corner and blob regions as
keypoints and reject homogeneous, edge, and ridge regions as non-features. Therefore,
we consider the homogeneous, edge, and ridge types as non-feature regions and the
corner, blob, and blocked blob types as feature regions.

The overall pipeline for our keypoint detection is depicted in Fig. 1 (b). For a given
local image patch, we compute the differences between the intensities of a center and
surrounding points and assign the similar label when the difference is under a certain
threshold, assigning the dissimilar label otherwise. If more than five surrounding points
have similar labels, the region is classified as a non-feature region because the homo-
geneous and edge types apply in this case. Classification between other categories also
may be possible with additional rule-based comparison tests. However, we use another
measure for classification in this case instead of adding more rules for robust and re-
peatable keypoint detections.

When we compute the difference between intensity levels on a central and a sur-
rounding point, large differences arise along a single axis in ridge-type regions. For
corner- and blob-type regions, large differences arise along two perpendicular direc-
tions (+,×). We use this characteristic as a keypoint measure and formulate an equa-
tion to have high response values for features and low response values for non-features.
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(a) (b)

Fig. 2. Sample pattern of our descriptor with N = 80 points. (a) The blue dots indicate sampling
points, the red circles show the radii corresponding to the standard deviation of a box kernel that
is used to smooth intensity values around sampling points. (b) The red lines denote the prede-
fined local directional vector at each sampling point and those are used for estimating dominant
orientation.

The proposed keypoint measure µ is defined as

µ = (2IC − IL− IR)(2IC − IT − IB)+ (2IC − ITL− IBR)(2IC − ITR− IBL), (1)

where IC,L,R,T,B represents the intensities of the center, left, right, top, and bottom
locations. This measure can be seen as an approximation of the Determinant of Hessian
(DoH). Here, (2IC − IL − IR) denotes the second-order partial derivatives in the x
direction and (2IC−IT−IB) denotes second-order partial derivatives in the y direction.
Similarly, (2IC−ITL−IBR) and (2IC−ITR−IBL) represent the second-order partial
derivative in the xy direction. The keypoint measure µ has a large response on corner or
blob regions; therefore, we finally classify locations as keypoints when there are large
keypoint responses.

In practice, we construct a scale-space for scale invariance and sample intensities
from one center and eight surrounding points. The surrounding points are centrally
symmetric and equidistant from the center point, as depicted in Fig. 1.

4 Descriptor

In this section, we present a new binary descriptor using the intensity order. Given a
keypoint location with a scale, we extract pattern intensities from a sampling pattern
and determine the dominant orientation for rotation invariance. Then, we establish the
rank order of the pattern intensities and binarize it to produce a binary descriptor.

4.1 Sampling pattern

To generate the descriptor, we use a sampling pattern, as shown in Fig. 2 (a). As in
previous methods, we sample intensities from a spatial division of the polar form. We
assign more sampling points to the center than to the surrounding areas according to
the retina model of the human visual system, which has a higher cell density at the
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center than in the surrounding areas [23]. The central part is less affected than the sur-
rounding areas when there are geometric transformations; therefore, it is beneficial to
assign more points to the center. The sampling pattern consists of one center point and
79 surrounding points around the center.

We sample the pattern intensity from each sampling point with spatial smoothing.
Spatial smoothing is applied to prevent aliasing, and the scale of the smoothing region
is determined according to the distances between adjacent sampling points. In Fig. 2
(a), the blue dots indicate the sampling points and the red circles represent the radius
corresponding to the standard deviation of the smoothing kernels.

4.2 Dominant orientation

For rotation invariance, we estimate the dominant orientation of a keypoint and con-
struct a descriptor vector along the dominant orientation. The dominant orientation is
determined by the weighted average of the local directional vectors. Each local direc-
tional vector is oriented toward the center point from a sampling point, and its magni-
tude set such that it is inversely proportional to the distance from the sampling points
and to the center point. Fig. 2 (b) shows the local directional vectors. The red lines show
the directions of the local vectors, and the lengths of these lines indicate the magnitudes
of the vectors.

The weight of each local directional vector is assigned as the difference between its
pattern intensity and the median of the pattern intensities. With the pattern intensities
and predefined local directional vectors, the dominant orientation θ of a keypoint is
computed as

θ = arctan

N∑
i=1

|Ii −M |
dyi
dxi

s.t. M = median
i∈{1,...,N}

(Ii), (2)

where N is the total number of sampling points, Ii represents an ith pattern intensity,
M is the median of pattern intensities, and (dx, dy) indicates a local directional vector.

4.3 Binary descriptor

We employ an ordinal description of pattern intensities. The ordinal description for an
invariant feature was introduced in earlier work [11]. It describes each measurement
using its rank order with sorted measurement values. Employing the ordinal description
technique is shown to have strong discriminative power and to be invariant to monotonic
deformations of embedding measurements. While the ordinal description has good in-
variance characteristics for many deformations, it is not designed for use with binary
descriptors. The binary descriptor is of greater importance due to its compact storage
size and fast matching performance. To take advantage of both approaches, we present
an ordinal binary descriptor.

After determining the dominant orientation, we obtain a measurement vector by
tracing the pattern intensities aligned with the dominant orientation. Then, we transform
the measurement vector into a rank-order vector by computing the rank of each element
value in the measurement vector. Our descriptor is formed by binarizing the rank-order
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Fig. 3. The overall process of our binary description, which is explained in Sec. 4.3.

vector. The binarization process is performed by means of a binary comparison test of
a certain threshold rank. Our binary descriptor D with the binary comparison test is
denoted as

D =

k∑
j=1

N∑
i=1

2N(j−1)2i−1bi, s.t. bi =

{
1, ri ≥ Tj
0, otherwise,

(3)

whereN is the total number of sampling points, k is the number of threshold values, Tj
represents a jth threshold rank, and ri denotes the ith element of the rank-order vector.
Given N and k, we determine the threshold rank T as

Tj =
j

k + 1
N, s.t. j ∈ {1, ..., k}. (4)

We set the number of threshold values k to 2 throughout the paper; therefore, our
descriptor becomes a 160-dimensional binary descriptor with 80 sampling points. The
overall process of our binary description is illustrated in Fig. 3.

Our simple binarization process experiences reduced coding efficiency compared to
the direct quantization of the rank order into 2k ranks. However, the important property
of our binarization process is that we can utilize the Hamming distance to compare en-
coded rank orders, which is one order of magnitude faster than the Euclidean distance.

Ordinal descriptions are insensitive to moderate rank-order errors, which enables us
to quantize rank-order descriptions into binary descriptors without a noticeable degra-
dation in the performance. Fig. 4 shows a comparison of an intensity-based ordinal
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Fig. 4. Distance distribution of matching pairs (blue lines) and non-matching pairs (red lines).
The Bikes dataset in Fig. 5 (c) is used in this experiment. (a) Intensity-based ordinal descriptor
(b) Our descriptor (k = 2)

descriptor and our quantized binary descriptor. For this experiment, the intensity-based
ordinal descriptor directly employs the rank orders as a descriptor, while our descriptor
uses the binarized version of the intensity-based ordinal descriptor according to Eq. (3)
with k = 2. The distributions of the two descriptors are very similar, indicating that
our descriptor retains the discriminative power of the intensity-based ordinal descriptor
even after binarization with k = 2.

Also, as illustrated in Sec. 5, we achieve good performance only with two threshold
values, which shows that the reduction in the coding efficiency is very small while the
gain in the computational efficiency is considerable.

4.4 Comparison to other descriptors

Our descriptor is closely related to ordinal descriptors [11, 21, 22] and binary descrip-
tors [6, 8, 7, 23] based on a brightness comparison test. For clarity, we present a de-
scription of the similarities and the differences between the proposed method and two
category descriptors.

Ordinal Descriptor The SIFT-Rank and the proposed descriptor are similar in terms
of their use of ordinal information to take advantage of ordinal descriptions which are
invariant to any monotonic transformations of the raw measurements. SIFT-Rank en-
codes ordinal information from raw SIFT descriptor values and the proposed descriptor
utilizes the rank of the pattern intensities to describe a keypoint. The difference between
the two methods is as follows. SIFT-Rank utilizes post-processing of the gradient-based
SIFT descriptor and is therefore not designed to improve the time and storage efficiency.
Also, SIFT-Rank uses a rank-order vector as a descriptor directly; thus, it may require
specialized matching metrics. On the other hand, the proposed descriptor is an indepen-
dent descriptor that uses the rank of the pattern intensities. It is also a binary descriptor
with an elaborate binarization method. This allows the proposed descriptor to have very
efficient time performance with low memory usage.
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Binary descriptor The similarity between existing binary descriptors and the proposed
descriptor is the use of a brightness comparison test to binarize a descriptor. The differ-
ence between them lies in the method used to select point pairs for the binary test. In
existing binary descriptors, those point pairs are fixed to all keypoints. BRIEF chooses
point pairs randomly or it depends on a certain distribution. BRISK uses the distance
between point pairs as a condition and selects some from all possible point pairs. ORB
selects point pairs according to decreases in correlations and increases in the degree of
variation. Instead of predetermining point pairs for the binary test, our method implic-
itly selects point pairs based on an analysis of the pattern intensity distribution.

In the next section, it will be shown through experiments that our method shows
better or comparable results relative to those of existing methods with fewer bits.

5 Experiments

To validate the performance of the proposed feature detector and descriptor, we conduct
experiments using publicly available evaluation toolkits and datasets. First, we give a
brief description of the experimental configuration, after which we present the experi-
mental results pertaining to the detector and descriptor evaluations. In this evaluation,
we mainly compare our method to methods that proposed both a detector and a descrip-
tor simultaneously.

Evaluation toolkits and Dataset Our method was mainly tested using the evaluation
toolkits proposed by Mikolajczyk et al. [24], Mikolajczyk and Schmid [19], and the
OpenCV-Features-Comparison toolkits (CVT)1. The evaluation codes are available on
the authors’ webpage. With the evaluation toolkits, we perform the evaluations us-
ing the dataset used in earlier studies [24, 19]. There are eight datasets with different
geometric and photometric transformations. These transformations include brightness
changes (Leuven), JPEG compression (UBC), blur (bikes and tress), zoom and rota-
tion (bark and boat), and view-point changes (graffiti and wall). Each set consists of
six images with gradually increasing levels of transformation. The dataset provides ho-
mographies between the first and the other images, and the homographies are used to
estimate ground-truth matches. Fig. 5 shows sample images of the dataset.

Experimental Settings We compare our method to the state-of-the-art keypoint detec-
tors and descriptors of SIFT, SURF, STAR, ORB, and BRISK. STAR uses only a key-
point detector while the other methods use both detectors and descriptors. All of the
compared methods are implemented in OpenCV 2.4.5, and we use the library with de-
fault parameters, except for ORB. For ORB, we set the number of features adaptively
to have it extract the same number of features used by our method. We present more
detailed information about each method in Table 1.

5.1 Repeatability performance

Mikolajczyk et al. [24] proposed the concept of repeatability to evaluate the perfor-
mance levels of keypoint detectors. Repeatability measures how much the keypoints

1 http://computer-vision-talks.com/2011/08/feature-descriptor-comparison-report/
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(a) Leuven (b) UBC (c) Bikes (d) Trees

(e) Bark (f) Boat (g) Graffiti (h) Wall

Fig. 5. Example images of Mikolajczyk and Schmid’s dataset used for evaluation: brightness
(Leuven), JPEG compression (UBC), blur (Bikes, Trees), zoom and rotation (Bark, Boat), view-
point change (Graffiti, Wall).

detected from two images overlap the same regions. It is a desirable property for invari-
ant local features, as a high degree of repeatability refers to the robustness of a keypoint
detector under various transformations.

We evaluate the performance of the detectors according to a method used in earlier
work [24]. Fig. 6 shows the evaluation results pertaining to the repeatability of each de-
tector under various transformations. SURF shows high repeatability over all images.
For binary features, BRISK has relatively low repeatability and ORB has different ap-
pearances depending on the dataset. Both binary features commonly have low repeata-
bility for scale changes, as they are based on multi-scale FAST, which is oriented for
fast keypoint detections. The proposed method demonstrates repeatability performance
similar to that of SURF because both methods detect keypoints using approximated
DoH measures.

5.2 Matching performance

We evaluate the matching performance using Mikolajczyk and Schmids evaluation
toolkit [19] and the CVT toolkit. Their evaluation toolkit [19] is publicly available
and evaluates descriptors by means of a precision-recall approach. The CVT toolkit
evaluates the performances of descriptors using synthetically transformed images. This
evaluation tool provides brightness, blur, rotation, and scale changes as the transforma-
tions.

Precision-Recall Fig. 7 shows the evaluation results using the aforementioned de-
scriptor evaluation toolkit [19]. Both the SIFT and the proposed methods outperform
the other methods in general. Specifically, SIFT outperforms other methods in terms
of scale and rotation transformations, and our method shows good performance with
transformations of brightness changes, blurring, and JPEG images.
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Fig. 6. Repeatability of keypoint detection.

CVT toolkit As the second matching experiment, the CVT evaluation toolkit is used
and the degree of transformation is finely adjusted for the evaluation. Fig. 8 shows
the performance with each level of transformation. SIFT generally shows good per-
formance, as shown in the previous precision-recall test. SURF shows matching per-
formance that follows SIFT. ORB shows relatively strong performance compared to
BRISK; however, both methods do not perform as well as SURF or SIFT. Our method
specifically shows robustness to brightness changes and Gaussian blurring. Our method
approaches state-of-the-art performance levels with relatively few bits.
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(d) Trees 1-4
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(e) Bark 1-4
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(f) Boat 1-4
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Fig. 7. Precision-recall performance.

5.3 Storage and time

All experiments are performed using an Intel i7 3.4GHz processor without multi-core
parallelism. Table 2 summarizes the computation time and storage amounts for feature
extractions, descriptions, and matching using the Boat dataset. To measure the compu-
tation time, we run 100 trials for each task and average them after dropping the best
10% and worst 10% of the results. For matching, we use a brute-force method.

The storage of the proposed descriptor is the lowest among the compared methods.
SIFT and SURF are 128- and 64-dimensional floating descriptors which require 512
and 256 bytes, respectively. ORB and BRISK require 64 bytes (512 bits), while our
method requires only 20 bytes (160 bits).
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Fig. 8. Matching performance under four kinds of transformations (Brightness change, Gaussian
blur, Rotation and Scaling)

Though our method is not fully optimized, it is nonetheless one order of magnitude
faster than SIFT and SURF in terms of feature extraction and is comparable to ORB
and BRISK in a trade-off between detection time efficiency and the repeatability gain.
Distance computation times between the descriptors are directly influenced by the de-
scriptor length; therefore, the use of a short descriptor has advantages in terms of the
matching time and the amount of required storage. Also, because our descriptor is a
binary descriptor consisting of 0s and 1s, we can use a bitwise XOR operator to com-
pare two descriptors with the Hamming distance, which is much more efficient than the
Euclidean distance.

6 Conclusions

In this paper, we presented a robust binary feature using the intensity order. We achieved
better detection results than other binary features in terms of repeatability. For robust
feature descriptions, we employ an ordinal description which is invariant to monotonic
transformations. We also presented a binarization method which encodes the intensity
order into a binary descriptor, which enables us to take advantage of better storage
and computational efficiency. We evaluated the proposed binary feature with various
experiments and demonstrated that our feature shows performance analogous to that of
SIFT and that it outperforms other binary features under various transformations with
much less storage use for feature descriptions.
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SIFT SURF ORB BRISK Ours
non-feature removal edge - FAST FAST FAST-variant

detector measure DoG DoH Harris FAST DoH-variant
sampling pattern grid grid polar polar polar

dimensions 128 64 256 256 160
storage/dimension 4bytes 4bytes 1bit 1bit 1bit
feature information gradient gradient intensity intensity order of intensity

Table 1. Feature detectors used for evaluation. Information about each feature detector is sum-
marized.

SIFT SURF ORB BRISK Ours
storage/keypoint [bytes] 512 256 64 64 20

# of keypoints 8802 6752 5682 2442 5682
detection time [ms] 221 278 19 27 67

description time [ms] 506 961 16 12 38
total extraction time [ms] 727 1239 35 43 105

description time/keypoint [ns] 57.5 142.3 2.8 4.9 6.7
total time/keypoint [ns] 82.6 183.5 6.16 17.6 18.4

Table 2. Computation time and storage. The table represents storage, feature detection, and de-
scription time. Time is measured using the first images in the Boat dataset. SIFT shows relatively
faster than SURF since SIFT is delicately optimized in the OpenCV 2.4.5 implementation.
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