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ABSTRACT

We present a high dynamic range (HDR) imaging algorithm
that utilizes a modern rank minimization framework. Lin-
ear dependency exists among low dynamic range (LDR) im-
ages. However, global or local misalignment by camera mo-
tion and moving objects breaks down the low-rank structure
of LDR images. The proposed algorithm simultaneously esti-
mates global geometric transforms to align LDR images and
detects moving objects and under-/over-exposed regions us-
ing a rank minimization approach. In the HDR composition
step, structural consistency weighting is proposed to generate
an artifact-free HDR image from an user-selected reference
image. We demonstrate the robustness and effectiveness of
the proposed method with real datasets.

Index Terms— HDR, Rank Minimization, Alignment.

1. INTRODUCTION

Radiance of a scene has far wider dynamic range than the
dynamic range of consumer cameras. Due to the limited dy-
namic range of cameras, the photographer should adjust the
range to focus on the region of interest of a scene by control-
ling the exposure time. Modern digital cameras provide pho-
tographers with convenient functions such as auto-exposure
to a focused region. However, the user cannot avoid under- or
over-saturation if the captured scene has a large difference be-
tween low and high radiance. The issue of HDR composition
therefore must be addressed to overcome the inherent differ-
ence between the dynamic range of human visual perception
and that of electronic imaging devices in practice.

To recover the wider range of scene radiance, conven-
tional approaches inversely follow an image acquisition
pipeline and estimate sensor irradiance from multi-exposure
images. These HDR composition methods with multi-
exposure LDR images recover radiance maps of static scenes
well. However, there are difficulties in directly applying the
conventional methods because ghost artifacts and alignment
errors occur due to both global transformations among LDR
images by camera shake and local misalignment by moving
objects and under-/over-saturation.

In this paper, we present an Intensity Observation Model
(IOM) that describes an intensity acquisition pipeline from
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sensor irradiance to image intensity. From the IOM, a linear
dependent relationship (rank-1 representation) among differ-
ently exposed images naturally arises. We exploit the linearity
in the IOM to handle geometric transformations and misalign-
ment in a unified rank minimization framework with a rank-1
constraint.

2. RELATED WORK

Mann and Picard [1] and Debevec and Malik [2] are consid-
ered pioneer works in the field of HDR imaging. In [1, 2],
they estimate the camera response function (CRF) and com-
pose radiance maps from multi-exposure images with the as-
sumption; that a static scene is captured with a fixed cam-
era. Ward [3] presents a translation based alignment algo-
rithm to account for camera motion among multi-exposure
images. The method searches translational motions along the
X/Y-axis. In practice, real camera motions by hand shake
include rotational motions that cannot be modeled with trans-
lations. Also, captured scenes may contain moving objects,
which cause ghost artifacts in the HDR image.

There have recently been some efforts to make artifact-
free HDR images. Gallo et al. [4] detect artifact regions
using a linear property of log radiance values by a block-wise
comparison. While their approach can handle ghost artifacts,
blocking artifacts may remain near block boundaries. Heo et
al. [5] propose a ghost-free HDR imaging framework by
using a joint bilateral filter approach. They align LDR im-
ages by homographies and detect ghost regions using graph
cuts [6]. The method shows appealing results, but there are
many parameters in each step and due to the heuristic com-
bination of various algorithms the results strongly depend
on the performance of each algorithm. For instance, ghost
detection results tend to be sensitive to threshold parameters
and the method fails to recover ghost-free HDR images if any
unsuitable parameter is selected.

Contrary to the above methods, our work is based on the
inherent property from an image acquisition model, and also
provides a joint optimization approach for registration and
outlier detection simultaneously.

3. PROPOSED ALGORITHM

In this section, we formulate the HDR composition as a rank
minimization problem that simultaneously estimates a set of
geometric transformations to align LDR images and detects
both moving objects and under/over-saturated regions.



3.1. Low-Rank Structure of Multi-Exposure Images
For a static scene, multi-exposure images taken from a fixed
camera are linearly proportional to the exposure time ∆t un-
der a linear CRF, because the sensor irradianceR of the scene
is constant [7, 8]. While a linear relationship is imposed
among the images, we cannot directly observe the ideal re-
lationship in practice due to artifacts such as camera motions,
moving objects, and intensity saturation.

We model a forward-intensity acquisition pipeline, called
an IOM, in consideration of the artifacts. The artifacts from
moving objects or saturation occupy a relatively small region
in the LDR images. They are modeled as sparse error ES
with sparse non-zero entries and large magnitudes. The cam-
era motion is represented as g in the homography transforma-
tion group G, which is a p-parameter group. Therefore, the
intensity image I is observed though the IOM as

I = f (k(R+ ES) ∆t) ◦ g−1, (1)

where f denotes CRF, ◦ is the element-wise mapping oper-
ator, and k denotes a constant scaling factor. We assume a
linear CRF because it can be estimated by various calibra-
tion methods even if images are unaligned (e.g.Grossberg et
al. [9]). Under this assumption, each observed image is rep-
resented as

Ii ◦ gi = f
(
k
(
R+ EiS

)
·∆ti

)
= kR ·∆ti + kEiS ·∆ti (if f is linear)
= Ai + Ei (Ai = kR ·∆ti,

Ei = kEiS ·∆ti), (2)

where i denotes an image index of multiple input images.
By stacking the vectorized images Ii, we construct the ob-
served intensity matrix O = [vec(I1)| · · · |vec(In)] ∈ Rm×n,
where m and n are the number of pixels and images, re-
spectively. We then use matrix representation for A =
[vec(A1)| · · · |vec(An)], E = [vec(E1)| · · · |vec(En)], and
g = {g1, . . . , gn} ∈ Rp×n. The IOM from Eq. (2) is rep-
resented as a matrix form O ◦ g = A + E. Each column of
the matrix A is spanned by sensor irradiance R. This means
that the aligned observation O ◦ g is equal to the background
irradiance A, which is the rank-1 matrix, if there is no artifact
in a scene (E = 0). In practice, the rank of O ◦ g is higher
than 1 due to the aforementioned artifacts. Therefore, HDR
composition that is robust to outliers becomes a problem
to decompose the observation matrix O ◦ g into the rank-1
matrix A and sparse error matrix E, and simultaneously to
estimate transformations g that make the matrix O possibly
close to rank-1.

3.2. Rank Minimization Approach
Our formulation is inspired by Peng et al. [10], which is a
batch image alignment task [11] that utilizes low-rank and
sparsity of the matrices A and E. We observed that the solu-
tion from [10] includes some outliers as inliers and vice versa,

and the alignment accuracy is degenerated when the number
of inputs in O is very limited. Such limited observations are
common in HDR problems due to a practical reason. Com-
mon HDR methods capture images with only 2-5 exposures,
and the use of five exposures could be enough to cover almost
all the informative dynamic range of a scene.

To derive a more satisfying solution, we utilize the prior
rank information as a constraint. We encourage the constraint
as an inequality constraint to robustly deal with residual fac-
tors, which cannot be modeled with sparsity with large magni-
tudes (e.g. Gaussian noise has dense entries with small magni-
tudes). With the rank constraint, our rank minimization prob-
lem is formulated as follows:

A∗,E∗ = arg min
A,E

rank(A) + λ‖E‖0,

subject to O ◦ g = A + E, rank(A) = 1, (3)

where ‖·‖0 denotes l0-norm (the number of non-zero entries
in matrix), and λ is the weight for sparse error. Unfortu-
nately, solving Eq. (3) is known to be intractable and opti-
mization with an inequality constraint is not easy. We ap-
proximate Eq. (3) by the convex relaxation [12, 13, 10] and
encourage the constraint by replacing the rank(·) and inequal-
ity rank constraint with the sum of singular value ratios of A,
similar to the definition in [8]. Minimizing the sum satisfies
the constraint and is equal to minimizing the residual rank of
A, because the first ratio is always 1. Our convex relaxed
objective function is given by

A∗,E∗,g∗ = arg min
A,E,g

∑
min(m,n)
i=2

σi(A)

σ1(A)
+ λ‖E‖1,

subject to O ◦ g +
∑

n
j=1Jj∆gεjε

T
j = A + E, (4)

where σi(A) denotes the i-th singular value of A, Ji =
∂
∂ς vec(Ii ◦ ς)|ς=gi ∈ Rp×n is the Jacobian of the i-th image
with respect to the transformation gi (we invite the reader to
[10] for details about the Jacobian representation.), and {εi}
denotes the standard basis for Rn. To avoid trivial solutions,
we use the ratio of singular values instead of directly using
singular values [8].

3.3. Optimization
The proposed objective function in Eq. (4) is a constrained
optimization problem. Lin et al. [14] propose an augmented
Lagrange multipliers (ALM) method to minimize high di-
mensional nuclear norm, and Peng et al. [10] adapt the ALM
method to solve the similar problem of Eq. (4). These ap-
proaches are known as scalable and fast convergence meth-
ods. We follow the optimization procedure in [10]. Let us
define h(A,E,∆g) = O ◦ g +

∑n
j=1 Jj∆gεjε

T
j −A−E.

The proposed Lagrangian function of Eq. (4) is then given by

L(A,E,∆g,Z, µ) =
∑

min(m,n)
i=2 σi(A)/σ1(A) + λ‖E‖1

+ < Z, h(A,E,∆g) > +
µ

2
‖h(A,E,∆g)‖2F , (5)



where µ is a positive scalar, Z ∈ Rm×n is an estimate of
the Lagrange multiplier matrix,<,> denotes the matrix inner
product, and ‖·‖F denotes the Frobenius norm. To solve this
easily, Eq. (5) is divided into three sub-problems for A,E,
and ∆g and iteratively minimized. The sub-problems for E
and ∆g are identical with [10], and therefore those problems
can be solved by [15, 10]. The reader can refer to papers [15,
10] for details. The sub-problem for A is updated by fixing
the other variables, and it is derived by

At+1 = arg min
A

L(A,Et,∆gt,Zt, µt)

= arg min
A

∑
min(m,n)
i=2 σi(A)/σ1(A)

+ < Zt,O
′ −A−Et > +

µt
2
‖O′ −A−Et‖

2
F

= arg min
A

µ−1t
∑

min(m,n)
i=2 σi(A)/σ1(A)

+
1

2

∥∥A− (O′ −Et + µ−1Zt)
∥∥2
F
, (6)

where O′ = O ◦ g +
∑n
j=1 Jj∆gεjε

T
j , and t indicates the

iteration index.
We normalize A by l2-norm in the initial step. Then,

σ1(A) becomes 1 and Eq. (6) can be solved by the Partial Sin-
gular Value Thresholding (PSVT) operator [16] (rank-1 case):

Pτ [Y] =U(DY 1 + Sτ [DY 2])VT

= arg min
X

1

2
‖X−Y‖2F + τ

∑
min(m,n)
i=2 σi(X),

where DY 1 = diag(σ1, 0, · · · , 0),

DY 2 = diag(0, σ2, · · · , σl),
(7)

where τ > 0 and Sτ [X] = {max(0, x−τ)} denotes the entry-
wise soft-thresholding operator [15]. U,V and D(= DY1 +
DY2 ) correspond to the singular value decomposition of Y.
In Oh et al. [16], the PSVT operator provides the closed-form
solution of Eq. (7).

For each iteration, At+1 can be updated with P as

At+1 = P[O′ −Et + Zt/µt, µ
−1
t ]. (8)

3.4. HDR composition

Since different exposure images capture different dynamic
range of a scene, taking multiple exposure images and com-
bining them may create a more informative image that cap-
tures all details of the scene. LDR images are combined by
H(x) =

∑n
i=1W

i(x) ·Ri(x)/∆ti, where n represents the
number of input images and H(x), Ri(x), and W i(x) denote
the estimated radiance, the sensor irradiance, and the weight
of the pixel located at x in the ith exposure, respectively.

Instead of direct use of a low-rank matrix, we use ra-
diometrically calibrated intensity Ri(x), and utilize the es-
timated sparse error as a weight, due to the following reason.

A photographer might want to compose a HDR image with a
moving object that appears in one of multi-exposure images.
Hence, the composition quality relies on the weight term W ,
which can help to remove undesired artifacts and to leave de-
sired objects by selecting a reference image.

In this paper, we use two different weighting terms given
as

W i(x) =
W i
E(x)

N∑
i=1

W i
E(x)

· W i
S(Ii(x))

N∑
i=1

W i
S(Ii(x))

, (9)

where WE and WS denote structure consistency and satura-
tion weighting terms, respectively.
Structural Consistency Assessment In images taken at
different times, each image may have different foreground
content. Therefore, it is useful to let the user select the ref-
erence image frame. We can generate HDR images with any
reference image because we already know the exact informa-
tion for inconsistent regions from the sparse error matrix E.
We define the structural consistency weight term as

W i
E(X) =

{
1 , if i = iref,

exp
(
−‖Ei(x)‖22 /σ

)
, otherwise,

where Ei(x) = vec
(
Ei

r(x), Ei
g(x), Ei

b(x)
)
, (10)

where σ is a variance and fixed to 3/255 in all experiments,
iref represents the image index selected as a reference, and
Eci (x) represents the magnitude of the sparse error matrix of
the c-color channel (in RGB space) at pixel location x.
Saturation Assessment The sparse error E is obtained
based on a majority of observations. Namely, if some re-
gions are over-exposed for more than half the input images,
a low-rank system may consider the over-exposure regions
as inliers. Thus, it is necessary to design another weight for
penalizing the undesired saturation. We observe that a simple
penalty such as WS(I) ≈ 0 for I = {0, 255}, WS(I) = 1
otherwise is sufficient, rather than a precise weighting func-
tion. We use the weighting function in [17], which has the
above property.

4. EXPERIMENTS

To show the performance of our method, we perform experi-
ments with real datasets. We set λ = 1/

√
max(m,n) where

m and n are row and column size of the matrix O during all
experiments; therefore there is no manual parameter. We ap-
ply a coarse-to-fine approach with a scale pyramid to avoid
local minima. The result from a coarser step is used as an
initial estimate of the next finer step. We compare our results
to results of Photoshop CS5 and Heo et al. [5]. For display, a
simple gamma function is applied to the results of Photoshop
and ours. For the results of Heo et al. [5], their tone mapping
is applied.

First, we perform global alignment with the Ache dataset [4].
The dataset consists of only five images and includes moving
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Fig. 1. Experiment results. (a) Alignment results (Top: Unaligned Input, Middle: RASL [10], Bottom: Ours). (b) Results of decomposition
to background and outliers from RASL and ours (c-d) HDR results from differently selected references of Ache dataset. (e-f) Additional
HDR results of Photoshop CS5 (left) and Ours (right).

objects. We additionally add geometric transformations with
a maximum of 5 degree rotation and 20 pixel translation to
each image for simulating camera motion. We compare our
alignment result to the result of RASL [10] and a resulting
average image is shown in Fig. 1-(a). Our method estimates
all the transformations accurately while RASL fails to esti-
mate transformations due to the limited number of samples
for directly applying their rank minimization approach.

Background estimations by decomposing the low-rank
matrix and sparse outliers from RASL and our approach are
shown in Fig. 1-(b). We apply both algorithms to each color
channel independently and transform all channel results into
a single canonical coordinate to align the results of RGB
channels. Ideally, the decomposed background (low-rank
matrix A’s) in Fig. 1-(b)-(1,3) should have similar intensities
with inputs where moving objects or saturation artifacts are
removed. In Fig. 1-(b)-(1), the brightness of background
from RASL has a large difference with our estimated back-
ground in Fig. 1-(b)-(3). The degenerated outliers (sparse
error matrix E’s) of RASL in Fig. 1-(b)-(2) yield dense non-
zero entries that should be originally sparse. In contrast, our
method shows the correct background scene in Fig. 1-(b)-(3)
and successfully detects outlier regions in Fig. 1-(b)-(4).

Figs. 1-(c,d) show HDR results with differently selected
references. In the results of Photoshop CS5 in Fig. 1-(c,d)-
(1), under-saturated radiance is observed. The result of Heo et
al. [5] in Fig. 1-(d)-(2) has ghost artifacts in moving object
regions. This originates from the performance of the unsta-
ble moving object detection. In contrast, our results clearly
reconstruct the HDR images of scenes without any artifacts.
Figs. 1-(e,f) show additional results. The results from Pho-
toshop CS5 have artifacts due to the aforementioned reason
while our results properly recover HDR images including
moving objects.

5. DISCUSSION AND CONCLUSION

We show that the low-rank (especially rank-1) and sparsity
models offer key information to analyze dynamic scenes con-
taining camera motion, moving objects, and saturation. By
virtue of advanced optimization methods, the artifacts are
effectively decomposed by our unified method without any
manual parameters. The performance and robustness of the
proposed method are demonstrated with real datasets. There
is room to improve the perceptual quality of HDR. As fu-
ture work, we will investigate preserving color balancing and
include outcomes in our unified framework.
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