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Abstract—In this paper, we present our recent sensor fusion
approaches to obtain high-quality 3D information. We first dis-
cuss two fusion methods that combine geometric and photometric
information. The first method, multiview photometric stereo,
reconstructs the full 3D shape of a target object. The geometric
and photometric information is efficiently fused by using a planar
mesh representation. The second method performing shape-from-
shading with a Kinect sensor estimates the shape of an object
under uncalibrated natural illumination. Since the method uses
a single RGB-D input, it is capable of capturing the high quality
shape details of a dynamic object under varying illumination.
Subsequently, we summarize a calibration algorithm of a time-
of-flight (ToF) sensor and a camera fusion system with a 2.5D
pattern. Lastly, we present a camera-laser sensor fusion system
for the large-scale 3D reconstruction.

I. INTRODUCTION

3D modeling is one of the most traditional problems in
computer vision and graphics, and its goal is to recover
3D information of the scene. There are many approaches to
obtain 3D information such as multiview stereo, structure-
from-motion, shape-from-shading, and using various depth
sensors. Since each approach has its own pros and cons, there
is a chance for improving 3D modeling performance by fusing
different approaches.

Geometric approaches such as multiview stereo and
structure-from-motion give sparse metric depth, while pho-
tometric approaches such as photometric stereo and shape-
from-shading give dense normal. Therefore, there have been a
few successful fusion systems combining the two approaches
to achieve dense and high quality 3D information. Sparse
metric depth data play the role of providing absolute positions
in 3D reconstruction whereas dense normals recover surface
details [1], [2].

Depth sensors such as Kinect, laser scanners, and time-of-
flight 3D sensors give video-rate depth information. However,
Kinect and time-of-flight 3D sensors give only a rough geom-
etry and 2D laser scanners give depth on a scan-line only.
Although the depth information is not sufficient for many
applications in accuracy, resolution, and field-of-view, it is
shown that utilizing the rough geometric information is very
useful [3].

In this paper, we present a brief overview on our recent
sensor fusion techniques for high-quality 3D modeling. We
present an efficient multiview photometric stereo via planar
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mesh representation. For practical use of high quality 3D
modeling, we present a shape estimation framework from
an RGB-D image under natural illumination. A calibration
algorithm for a ToF-Camera fusion system based on a novel
2.5D pattern board is introduced. To reconstruct large-scale
outdoor scenes, we present a camera-laser fusion system as
well as a reconstruction algorithm.

II. EFFICIENT MULTIVIEW PHOTOMETRIC STEREO
VIA PLANAR MESH REPRESENTATION

Among various methods for recovering 3D geometry of
closed-shape objects, multi-view photometric stereo (MVS)
utilizes images which are taken with controlled light condition.
In this section, we review our MVS algorithm [4] which
is devised for recovering high-quality surface texture in an
efficient manner.

A. Planar Mesh Representation for MVS

The key concept of MVS is combining photometric cues
and geometric cues for detailed geometric recovery of a target
object. For combining two cues in 3D domain, previous MVS
methods [1], [2] utilizes 3D mesh representation which is
composed of 3D vertices and surface polygons. These methods
update vertices of rough geometry by using convex optimiza-
tion where the penalty function evaluates inappropriate vertex
positions based on photometric cues.

In this work, we propose a novel method that updates
geometry in a planar mesh representation. The major benefit
is threefold. 1) Multiview images can be jointly handled in a
unified domain which avoids per view normal map merging.
2) The planar mesh can efficiently accommodate high-density
geometry which is fit for recovering highly delicate surface
details. 3) Planar representation relaxes redundant degree of
freedom (DoF) for geometry update, hence the optimization
become more efficient.

B. Pipeline of Proposed Method

Base Geometry Acquisition. As a first step, our method
utilizes structure from motion (SfM) [5] and multi-view stereo
(MVS) to acquire rough geometry and camera parameters. The
detailed steps for base mesh acquisition are follows. 1) Obtain
dense depth maps via semiglobal matching [6]. 2) Each depth
maps are merged into voxel grid. 3) Labeling voxels using
volumetric graph-cut [7]. 4) Obtain base mesh using marching
cubes [8].

Mesh Parameterization. We parameterize the base mesh into
2D texture map domain for optimal fusion of photometric cues
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Fig. 1: Our multiview photometric stereo result. (a) One of input images. (b) Base geometry acquired by structure from motion
and multiview stereo pipeline. (c) Estimated surface normal of the object in a texture domain. (d) Computed displacement map
for base mesh refinement. (e) Refinement result.

and base mesh. We use Isochart [9] which minimizes non-
uniform distortions which affect uniform sampling of surface
mesh.

Image Warping. We warp images into texture domain with
following procedure. 1) For each pixels in texture map, we
find a corresponding 3D position of the base mesh. 2) Project
the 3D position in image domain and get the pixel intensity.
3) Transfer the pixel intensity to the texture map.

Surface Normal Estimation. We assume dichromatic re-
flectance model which is combination of Lambertian shading
and specular lobe. With this assumption, we give rank-3
constraint [10] on observed intensity matrix. To relieve linear
ambiguity, we use surface normal from base mesh. Note that
this is uncalibrated photometric stereo; the method does not
require light directions for normal estimation. In addition,
normal estimation is performed on the texture domain which
means unified handling of multiview images.

Geometry Refinement. Given photometric normal, we refine
base geometry via convex optimization. In contrast to previous
methods [2], [1], we optimize geometry by solving for dis-
placement map [11] not for 3D vertices. In this procedure the
rich details in surface normal are transferred to displacement
map. Our convex cost function consists of two terms. The first
term measures inconsistency between normal of base mesh and
estimated surface normal. The second term regularizes large
displacement value. The global optimum can be computed with
sparse linear matrix solver.

C. Experiment Result

Fig. 1 shows a result of our method. The object named
Agrippa is placed on the dark room under controlled light
condition. We use 312 images which is taken with varying
viewpoints and light directions. Fig. 1 (e) shows the refined
geometry by applying the displacement map to the base mesh.
It shows rich level of details especially ear, hear and facial
expression of the Agrippa.

III. HIGH-QUALITY SHAPE FROM AN RGB-D IMAGE
UNDER NATURAL ILLUMINATION

RGB-D sensors (e.g., Kinect) consisting of a color camera
and a depth sensor become popular. While they give video-rate
depth information, the depth quality is not good enough for 3D

Fig. 2: System setup for real-world shape capture. Flea3 for
color images + Kinect for depth images

modeling applications as shown in Fig. 3. In [12], we propose a
shape estimation framework that dramatically improves shape
details of diffuse objects with uniform albedo from an RGB-D
sensor. This section is a brief summary of the algorithm [12].

Depth data from RGB-D sensors are typically very noisy
due to the limited resolution of the depth sensor. To reduce
depth noise and obtain smooth surface, we first apply the
bilateral filtering on the given depth map. In the following
explanation of this section, we consider depth as a smoothed
one.

Our method consists of the following steps. We exploit the
given color and depth to estimate a quadratic lighting model.
It is followed by per-pixel lighting variable estimation that
models spatially varying illumination. We determine surface
normals with the estimated lighting, and then high quality
shape is obtained by fusing the given geometry with the
estimated normals.

Image intensity is determined by a shading function applied
to the surface normal. As studied in [13], the intensity of
convex diffuse objects is insensitive to high frequencies in
lighting environment. Therefore, the intensity of diffuse objects
can be explained by a low-dimensional global lighting model
like spherical harmonics and quadratic function [14]. We use
the quadratic function as a global lighting model and estimate
the quadratic lighting variables from the observed intensities
and the normals from the given rough geometry. Although
the normals are inaccurate and possibly contain outliers, the
object provides enough information for estimating the low-
dimensional lighting model. Therefore we estimate the global
lighting variables for each color channel by solving an over-
determined linear system.

While the quadratic lighting model explains diffuse surface
under natural illumination with a small number of variables,
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Fig. 3: Our result from a single RGB-D input under uncontrolled natural illumination.

there are local lighting variations due to attached shadows,
interreflections and near lighting. To account for spatially
varying illumination, we extend the quadratic model with
multiplicative per-pixel variables.

We estimate the per-pixel lighting variables from the global
estimation error, which can be decomposed into two factors;
local lighting variations from the global estimate, and geomet-
ric normal deviations from the true normals. The goal of the
per-pixel lighting variable estimation is to separate the local
lighting variation from the total error. The geometric normal
error corresponding to the missing detailed shape in the rough
data is recovered in a subsequent normal optimization step.

The key idea for estimating the per-pixel variables is to
exploit different frequency characteristics in the two error
factors. The geometric normal deviations from the true normals
have a high-frequency characteristic when compared to the
accurate low-frequency structures of input depth. However,
the local lighting variations from the global estimate have
a low-frequency characteristic because lighting is smoothly
varying [15].

With the modified quadratic lighting model, normal esti-
mation becomes a nonlinear optimization problem. While the
previous method [14] shows the nonlinear problem can be
solved, it still suffers from local ambiguity, which means that
the resulting surface normal is not unique. In our approach,
the additional depth information greatly reduces the local
ambiguity.

After normal estimation, high quality depth is obtained by
fusing depth information with the estimated normals. We use
the fusion algorithm described in [1] 1.

To show the performance of our method, we capture real-
world objects using the Kinect-based system as shown in
Fig. 2. The result of shape estimation under uncontrolled
natural illumination is presented in Fig. 3. The result shows
that our method successfully estimates extremely detailed
shape of target objects in the presence of spatially varying
illumination.

IV. CALIBRATION OF TOF AND CAMERA FUSION SYSTEM

Accurate depth estimation of the scene has been one of the
key research interests for past decades. Especially in mobile
robot applications, people have installed various metric depth

1http://w3.impa.br/ diego/software/NehEtAl05/

Fig. 4: A general checkerboard(first, second) and our 2.5D
pattern board(third, fourth) in a color image (first, third) and
an amplitude image of a ToF sensor(second, fourth)

measurement devices because accurate depth estimation is
directly related to many important tasks such as mapping,
navigation and obstacle avoidance. Recently, there are many
kinds of depth measurement devices such as Kinect and ToF
camera that can provide the full 3D of the scene in real-time.
But what they provide is not in the same size as the HD color
image, nor are they looking at the exact same view as the
color camera. All the applications using this sensor fusion
system must be followed by the exact sensor calibration. In
this section, we present a review of our calibration algorithm
published in [16].

Instead of checkerboard, we have designed a 2.5D pattern
that provides correct correspondences for both color and
depth images automatically. And we propose an optimization
based framework for color and 3D ToF camera sensor fusion
calibration. In the optimization, the error function f is to
be minimized. It contains the reprojection error in the color
images, and the amplitude images of the ToF camera, and the
depth measurement errors of the plane in 3D. Three errors can
have different weights to emphasize a certain type of error
more than others in the optimization process.

A. 2.5D pattern board

One of the problems is that the commonly used checker-
board is not appropriate for the 3D ToF camera due to its
low resolution. In order to get an accurate calibration result,
minimizing reprojection errors using correct correspondences
is crucial. But the amplitude image of a ToF camera is very
blurry so that it is very hard to get the exact correspondences
automatically by corner detection.

The fundamental strategy for better calibration can be
simply said to find the precise correspondences between the
model plane and the amplitude images of a 3D ToF camera as
well as with the color images. Therefore we have constructed
a 80cmx60cm pattern board that has 64 holes, as shown in
Figure 3. The diameter of each hole is 4cm, which is large



Fig. 5: Color reprojection before(left) and after(right) intrinsic
parameter optimization

Fig. 6: Before(left) and after(right) the removal of outliers
using plane fitting

enough for the infrared rays of the ToF camera to pass through
the hole so that the dot patterns are clearly shown even in a
176x144-sized amplitude images.

B. Intrinsic parameter optimization

If we calculate the pinhole camera parameters using only
several dot-pattern correspondences, the projection looks like
the left figure in Fig. 5. The image is severely distorted
especially on the boundaries because the number of corre-
spondences is simply not enough. Therefore, we used all
the 3D-2D mapping relationship gotten from a single shot,
which is about 25,000 correspondences, to optimize the camera
parameters including radial distortion. We used Levenberg-
Marquardt optimization to minimize the reprojection errors.

C. Depth constraint

We also include depth constraint for better accuracy of the
calibration result. It is the same constraint that is used for
camera-laser scanner calibration. But we had to go through
filtering process to outliers around the pattern plane and leave
out only the depth measurements of the pattern plane to
constrain them to be exact. We applied RANSAC based plane
fitting. The left and right figures in Fig. 6 show before and
after the removal of outliers using plane fitting, respectively.

D. Summary

In conclusion, we have presented an extrinsic calibration
method to estimate the pose of a 3D ToF camera with respect
to a color camera. We use 2.5D pattern so that the correct
correspondences are obtained for both color and ToF cameras.
For accurate reprojection error calculation, we refine the intrin-
sic parameters of the ToF camera to model its projection as
a pinhole camera model. Depth constraint which restricts the
depth measurement to lie on the pattern plane is also employed
into LM optimization as well as the reprojection errors. Our
process is basically fully automatic, including the acquisition
of sufficient correct correspondences.

V. LARGE-SCALE 3D RECONSTRUCTION
BY CAMERA-LASER FUSION

Laser sensors provide accurate depth information. Recently
3D laser sensors such as Velodyne become popular, but 2D
laser sensors are still considered as a cheap and efficient
solution. In order to reconstruct 3D structures using them,
they are usually mounted on a ground vehicle and scan
targets vertically while the vehicle moves horizontally. If the
motion of the sensor system is estimated, scanned data can be
accumulated to generate a 3D point cloud of the structures. In
the framework, the most important problem is to estimate the
motion of the system. Usually it is assumed that the motion
is defined in 2D space with 3 degrees of freedom: 1 from
rotation and 2 from translation. We attach cameras to 2D laser
sensors to estimate free motion in 3D space (i.e. 6 degrees of
freedom). The rest of this section is a brief introduction of our
sensor fusion systems published in [17] and [18].

The overall process of motion estimation consists of three
steps: calibration, local estimation and global refinement. In
order to utilize cameras and laser sensors in a unified al-
gorithm, their relative poses must be computed first. Instead
of using the typical point-plane constraint [19], we proposed
a point-line constraint which utilizes the edges of a planar
pattern. Because of the stronger constraint and accurate edge
detection, calibration results by the proposed method showed
higher accuracy than those by the previous method.

Local estimation step computes the relative pose be-
tween adjacent frames based on structure-from-motion (SFM)
methodology. The key idea of this step is to consider scanned
data as 3D points in camera coordinate system. Scanned
points are transformed into camera coordinate system using
the calibration result. These points are projected onto images
and tracked to adjacent frame. Conventional SFM algorithms
such as perspective 3-point [20] can be used to estimate
the relative pose between the adjacent frames. In order to
avoid degenerated configuration caused by 2D laser sensor,
we proposed a new algorithm called ‘generalized laser 3-point’
[21]. In real experiments, the proposed algorithm outperformed
conventional algorithms.

Frame-by-frame methods always suffer from error accumu-
lation problem. We reduced accumulated error by closing a few
loops. We registered local 3D structures to compute relative
pose between two visits of the same scene. Then we optimized
the poses of the loops in global coordinate system to minimize
accumulated error to be distributed to frames. The accumulated
error is distributed equally to all frames [22] to satisfy closed-
loop constraint and maintain local accuracy simultaneously.

We designed two different systems with own purposes.
The hand-held system [17] is carried by a human operator to
capture and reconstruct narrow scenes. The vehicle-mounted
system [18] is mounted on a ground vehicle to capture and re-
construct large-scale scenes. Reconstruction results are shown
in Fig. 8.

VI. CONCLUSION

In this paper, we have presented a brief overview on several
sensor fusion algorithms for high-quality 3D modeling. An
efficient multi-view photometric stereo method can reconstruct
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Fig. 7: Camera-laser fusion systems. (a) Hand-held system (b)
Vehicle-mounted system

(a) Traditional school by the hand-held system

(b) KAIST campus by the vehicle-mounted system

Fig. 8: Reconstruction results.

the full high-quality 3D model of an object [4]. It is shown
that photometric stereo combined with the well-known multi-
view stereo approach drastically improves the accuracy of 3D
information. It is also important to note that a shape-from-
shading algorithm can be a viable solution to obtain high-
quality 3D information once it is given rough initial depth
information by a Kinect sensor. A novel lighting model is very
effective to estimate the accurate surface normal of an object
under uncalibrated natural illumination [12]. Our calibration
method using a novel 2.5D pattern plane makes a time-of-
flight sensor and a camera fusion system practical [16]. For
the reconstruction of large-scale scenes, we have presented a
camera-laser sensor fusion system [17], [18]. The camera-laser
fusion system have successfully reconstructed the 3D model
of the KAIST campus without using GPS information. Com-
bining photometric information with geometric information for
large-scale outdoor scenes is currently underway.
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