
REAL-TIME MOTION DETECTION BASED ON DISCRETE COSINE TRANSFORM

Tae-Hyun Oh, Joon-Young Lee, In So Kweon

Robotics and Computer Vision Lab, KAIST, Korea

ABSTRACT

We present a motion detection algorithm by a change detec-
tion filter matrix derived from Discrete Cosine Transform.
Recently, a Fourier reconstruction scheme shows good results
for motion detection. However, its computational cost is a
major drawback. We revisit the problem and achieve two or-
ders of magnitude faster than the previous algorithm with bet-
ter performance. The proposed algorithm runs at about 800
frames per second for VGA resolution images on a consumer
hardware by using only integer matrix multiplication and the
symmetric property of the change detection filter matrix. In
addition, our algorithm is fundamentally robust to sudden il-
lumination changes because it works based on edge informa-
tion. We verify our algorithm with challenging datasets that
contain strong and sudden illumination changes.

Index Terms— Motion detection, discrete cosine trans-
form, video surveillance, change detection

1. INTRODUCTION

Motion detection is a fundamental issue for video surveillance
and widely used as a preprocessing step for many computer
vision and image processing applications, such as event de-
tection, object tracking, behavior recognition, and so on.

For a surveillance system that uses a static camera, back-
ground subtraction is a conventional approach to detect mov-
ing objects. Background subtraction algorithms compare the
difference between an input image and a reference back-
ground model. To determine proper threshold values, these
methods should learn statistic parameters of environment
variations using a Gaussian mixture model [1] [2] [3], ker-
nel density estimation [4], and so on. However, once abrupt
changes appear in a scene, algorithms could easily fail to
extract moving object regions.

Recently, Tsai and Chiu [5] show that a Fourier recon-
struction algorithm can extract exact boundaries of moving
objects from a static camera. The algorithm uses frequency
analysis on a 3D x-y-t spatial-temporal space compiled by
stacking consecutive frames of 2D spatial images. This
approach extracts moving object regions by removing back-
ground patterns using the Fourier transforms. If there is no
moving object over a limited number of consecutive frames,
a vertical line pattern exists on a 2D x-t plane which is a slice

Input vector 𝒗

Time

…

T-N+1 T T-N+i …

Change Detection
Filter Matrix

𝑳

Detected motion 𝒎

…

T-N+1 T T-N+i …

…

…

…

…

…

…

Fig. 1. Overview of our algorithm. We construct an input
vector from N recent consecutive frames on the same pixel
position. Then, we determine motion boundaries by multiply-
ing a change detection filter L to the input vector as described
in Sec. 2

of the 3D x-y-t space. Conversely, if moving objects appear
in the x-t slice, the vertical line pattern structure is partially
broken. With assuming pixel dependency, the pattern can
be efficiently removed by 2D frequency analysis on the x-t
plane. It is robust to image noise and adapt well to both grad-
ual and sudden changes. However, the algorithm has high
computational complexity, because it requires 2D Fourier
transform. Our work is motivated by Tsai and Chiu’s Fourier
reconstruction(FR) approach [5]. We present a motion detec-
tion algorithm using Discrete Cosine Transform (DCT). Our
algorithm works two orders of magnitude faster than the FR
method [5] with better performance.

2. MOTION DETECTION BY DISCRETE COSINE
TRANSFORM

In an image sequence, we consider a sequence of intensities
at a pixel position along time axis as a vector v. Then, ele-
ments of v in background regions have similar values along
time. If v is in motion boundaries, abrupt intensity changes
appear in v. The abrupt changes in v can be easily extracted

by high-pass filtering in frequency domain. Frequency do-
main is robust to noise and intensity variations, and useful to
remove static values on individual pixels by high-pass filter-
ing [5].

We choose DCT as a frequency analysis tool because of
two reasons. First, DCT is efficient to filter static values due
to an energy compaction property. Second, DCT results in
only real values, while Fourier transform has both real and
imaginary components. DCT can be easily constructed to a
matrix form so that we derive a change detection filter from
DCT in the following.
Derivation of a change detection filter. Our method is based
on temporal consistency of intensities on the same pixel posi-
tion in recent N frames over time. N × N DCT matrix DN

is denoted by

{DN}i,j =

√
2

N
cos

[
π

N

(
i− 1

2

)(
j − 1

2

)]
, (1)

where i and j are a row and a column index of DN matrix.
To detect moving object boundaries, we use edge images as
the input. Therefore, an observation vector v contains inten-
sities of edge images on one pixel position over the recent N
frames.

Abrupt changes in v can be detected by frequency anal-
ysis. The observation vector v is transformed to frequency
domain by DCT and then high-pass filtering is applied to the
transformed vector. Finally, we apply inverse DCT to convert
the filtered vector into the result vector m in time domain. All
these operations, DCT, high-pass filtering and inverse DCT
can be represented into matrix forms. Specifically, we define
a N × N diagonal matrix EN,∆w to represent high-pass fil-
tering into matrix form as

EN,∆ w = diag(0, · · · , 0︸ ︷︷ ︸
∆w

, 1, · · · , 1︸ ︷︷ ︸
N−∆w

), (2)

where ∆w is a filter width parameter. Theoretically, the re-
sult of our algorithm would suffer from ringing artifact, since
Eq. (2) is an ideal high-pass filter. In practice, the artifact is
not observed in our experimental results. Magnitudes of low
frequencies in the transformed vector are relatively small be-
cause most of texture-less regions have zero values in edge
images. Thus, the artifact due to the filtering are negligible.

Combining all the operations in matrix forms, we can
solve the motion detection problem as matrix multiplications
by

m = DN
T · EN,∆w ·DN · v = L · v. (3)

We call the matrix L in Eq. (3) as a change detection filter,
which can be pre-calculated. Consequently, we construct an
observation vector v for each pixel in the input, then we can
get a motion detection result m for each pixel by multiplying
L and v.

In an implementation, we only need one component in
a vector m for fast computation. Namely we use one com-
ponent in the middle that is less affected by Gibbs effect of

DCT. Also, our method processes each pixel independently,
therefore it is very suitable for parallel processing.
Fixed point implementation. To implement our algorithm,
we need floating point operations because the change detec-
tion filter L has floating values due to DCT basis. To re-
duce computational complexity, we can convert floating point
operations into fixed point operations by scaling. Convert-
ing procedures from floating values to fixed values consist of
up-scaling, quantization, change detection filtering and down-
scaling.

For up/down-scaling the change detection matrix effi-
ciently without overflow, we only consider bit shift operator.
With bit shift operator, a proper up-scaling level satisfy the
following inequality:

2l (imax|L|maxN) < 2B−1, (4)

where l is a bit shift level for scaling, imax is the maximum
intensity level (e.g., 255), |L|max is the maximum absolute
value in the matrix L, N is the size of the v, and B is the
number of system data bus bits (e.g., 32 or 64 bits). To deter-
mine the maximum integer value of l from Eq. (4), we derive

l = floor(B − 1− log2(imaxN |L|max)). (5)

Therefore, an up-scaled change detection filter L̃ is given by

L̃ = round
(
2lL
)
, (6)

where round is an element-wise rounding operator. In
Eq. (3), we substitute L with L̃, then we can get a result
using only fixed point operations. To maintain the scale level
of v, down-scaling is required to L̃ · v. Therefore, the fixed
point version of Eq. (3) is denoted by

mf ' 2−l
(
L̃ · v

)
= 2−l

(
round

(
2lL
)
· v
)
, (7)

where mf is the motion detection result with fixed point val-
ues. In Eq. (7), 2l and 2−l are implemented by left and right
bit shift operators. Also, L̃ can be pre-calculated.

3. EXPERIMENTS

In this section, we perform experiments to evaluate our algo-
rithm. For our method, we set the number of temporal image
frames N to 5 and the bit shift level l to 23. To extract edge
images, we use a 3x3 Sobel filter. Tsai and Chiu [5] show
that setting the first and the second frequency components to
zero is suitable for removing static values from background
and for reducing small variations of magnitude in the vector
m. Therefore we also use the filter width ∆w = 2 to extract
pixels in moving object boundaries.

For evaluation, we compare our algorithm to simple tem-
poral difference [6], one of the state-of-the-arts background
subtraction algorithm [3] and the Fourier reconstruction [5].

Temporal difference is implemented by the following equa-
tion:

|It(p)− It−1(p)− µd|
σd

, (8)

where It(p) is an intensity at a pixel position p in an input se-
quence at time t, µd and σd are mean and standard deviation
of the difference between two images, It − It−1. Pilet et al.’s
method [3] is robust to sudden illumination changes due to ro-
bustness of Normalized Cross Correlation (NCC) for illumi-
nation changes. Our implementation of the FR method [5] use
FFT algorithm in FFTW C++ library1. We compare the algo-
rithms with two challenging datasets. Both datasets are videos
of 720×480 and 640×480 (VGA) resolution, and have strong
and sudden illumination changes to demonstrate robustness to
illumination changes of each algorithm. One of the datasets
was captured with an auto-exposure setting and the other one
was captured with a fixed-exposure setting.

Fig. 2 and Fig. 3 show comparison results with both
datasets. We put Sobel edge images to compare with our mo-
tion boundary images. In both figures, temporal difference
algorithm [6] fails to extract accurate boundaries of motion
parts because it is weak for local illumination changes and it
extracts not only motion boundaries but also union regions of
differences observed in both images. Especially, the results of
temporal difference [6] in Fig. 3 show poor performances due
to low contrast. Background subtraction [3] works reasonably
for most input sequences, however it fails to detect moving
object regions when large illumination changes happen in
short duration.

On the other hand, we can observe both the FR [5] and our
method detect motion boundaries well, even there are large
illumination changes in short duration. It means both algo-
rithms based on frequency analysis are more robust to sud-
den illumination changes than the others. Basically, the FR
and the proposed method come from similar analyses. There-
fore both algorithms show similar results in both Fig. 2 and
Fig. 3. A detailed comparison between the FR and our method
is presented in Fig. 4. Our method has clearer boundaries be-
cause the process of the FR algorithm affects neighbor pixels
each other due to the pixel-dependency assumption of 2D fre-
quency analysis. It causes noisier boundaries in the FR than
our motion boundaries that each pixel is processed indepen-
dently.

We compare computation time of both the FR [5] and our
methods in Table 1. Algorithms are tested on Intel i7 3.0
GHz processor. With the general floating point implemen-
tation in Eq (3), our method is around 25 times faster than
the FR method because we do not perform 2D FFT operation
and we can utilize the pre-calculation of the change detection
filter L. In case of the fixed point implementation in Eq (7),
it takes about 1ms for processing one VGA image and we
achieve more than 100 times faster processing time compar-
ing to the FR method.

1http://www.fftw.org/

(a) Input images

(b) Temporal difference [6]

(c) Background subtraction [3]

(d) Sobel edge

(e) Our method

Fig. 2. Experiment results for strong and sudden illumination
change with an auto-exposure setting.

(a) Input images

(b) Temporal difference [6]

(c) Background subtraction [3]

(d) FR [5]

(e) Our method

Fig. 3. Experiment results for strong and sudden illumination
change with a fixed-exposure setting.

(a) Input image (b) FR [5] (c) Ours

Fig. 4. A detailed comparison between FR [5] and our
method.

Algorithm Elapsed time (ms)
FR [5] 131.58

Ours 1 (floating point operations) 5.44
Ours 2 (fixed point operations) 1.14

Table 1. Processing time for VGA (640×480) images. Ours 1
is the result that use floating point operations in Eq. (3).
Ours 2 is the result of the fixed point implementation of Ours
1 in Eq. (7).

Applications. We introduce an application to moving object
segmentation in Fig. 5. Graph-cuts [7] is widely used for the
object segmentation. Graph-cuts formulates the segmentation
problem into a Markov Random Field (MRF) graph optimiza-
tion problem. In the MRF graph, a Gaussian mixture model of
pixel colors is used as data term and edge is used as smooth-
ness term. In our application, we use the result of our mo-
tion boundary detection for smoothness term. In Fig. 5 (a),
red and blue scribbles represent initial seeds of foreground
and background. The segmentation results are obviously im-
proved when our motion detection is combined to the MRF
model as smoothness term.

4. CONCLUSIONS

We have presented the motion detection algorithm for real-
time video surveillance that runs at 1ms per one VGA res-
olution image on a consumer hardware without any parallel
optimization. We presented frequency analysis for the mo-
tion boundary detection and derived the change detection fil-
ter from DCT that can be pre-calculated. Our key contri-
bution is making the motion detection algorithm ultra high
speed. Our algorithm is evaluated with challenging datasets
and have shown robust results to sudden illumination changes.
For future work, we will investigate an adaptive thresholding
method to get clearer and robust results and will apply our re-
sults as a motion prior to improve performance of many image
processing and computer vision applications.

5. ACKNOWLEDGEMENT

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MEST) (No.2012-0000986)

(a) Input images

(b) Graph-cuts [7]

(c) Graph-cuts with our motion detection

Fig. 5. Application of our motion detection to the object seg-
mentation

6. REFERENCES

[1] C. Stauffer and W. E. L. Grimson, “Adaptive background
mixture models for real-time tracking,” IEEE Conference
on Computer Vision and Pattern Recognition, pp. 246–
252, 1999.

[2] P. KaewTraKulPong and R. Bowden, “An improved
adaptive background mixture model for real-time track-
ing with shadow detection,” European Workshop on Ad-
vanced Video Based Surveillance Systems, vol. 25, 2001.

[3] J. Pilet, C. Strecha, and P. Fua, “Making background
subtraction robust to sudden illumination changes,” Eu-
ropean Conference on Computer Vision, pp. 567–580,
2008.

[4] A. Mittal and N. Paragios, “Motion-based background
subtraction using adaptive kernel density estimation,” in
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2004, vol. 2, pp. II–302 – II–309 Vol.2.

[5] Du-Ming Tsai and Wei-Yao Chiu, “Motion detection us-
ing fourier image reconstruction,” Pattern Recognition
Letters, vol. 29, no. 16, pp. 2145 – 2155, 2008.

[6] S. C. S. Cheung and C. Kamath, “Robust background
subtraction with foreground validation for urban traffic
video,” EURASIP Journal on Applied Signal Processing,
vol. 2005, no. 14, pp. 2330–2340, 2005.

[7] Y. Y. Boykov and G. Funka Lea, “Graph cuts and effi-
cient N-D image segmentation,” International Journal of
Computer Vision, vol. 70, no. 2, pp. 109–131, Nov. 2006.

