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Abstract

We present a robust radiometric calibration method that
capitalizes on the transform invariant low-rank structure of
sensor irradiances recorded from a static scene with differ-
ent exposure times. We formulate the radiometric calibra-
tion problem as a rank minimization problem. Unlike pre-
vious approaches, our method naturally avoids over-fitting
problem; therefore, it is robust against biased distribution of
the input data, which is common in practice. When the ex-
posure times are completely unknown, the proposed method
can robustly estimate the response function up to an expo-
nential ambiguity. The method is evaluated using both sim-
ulation and real-world datasets and shows a superior per-
formance than previous approaches.

1. Introduction

In most cameras, there exists a radiometric response

function that relates sensor irradiance and output brightness

values. The function is typically designed to be non-linear

for purposes such as compressing the dynamic range of sen-

sor irradiance or for adapting to the display’s non-linear

mapping. While many computer vision algorithms assume

linear (or affine) relationship between the sensor irradiance

and the recorded intensity, the radiometric response func-

tions are generally non-linear and unknown. Moreover, the

shape of the functions may even vary with camera parame-

ter settings. Therefore, radiometric calibration is an impor-

tant first step for various computer vision algorithms that

assume the linear relationship between the irradiance and

observation to make them work correctly.

When multiple images are recorded from a static scene

with different exposure times, the sensor irradiances at cor-

responding pixel locations are linearly related by the ratio

of exposure times. If the response function is linear, the

∗This work was done while Joon-Young Lee was an intern at Microsoft

Research Asia.
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Figure 1. Illustration of our approach. Our method takes a set of

images taken from a fixed view point with varying exposure times.

In the matrix form, by putting images as column vectors, the irra-

diance matrix should be rank 1, while the observations matrix has

the higher rank. Our method seeks the inverse response function

that transforms the observation matrix into a low-rank matrix.

recorded pixel values (observations) show the linear rela-

tionship across the images. However, when the response

function is non-linear, the linear relationship breaks down.

In this paper, we present a new radiometric calibration

method that capitalizes on the fundamental linear depen-

dency of sensor irradiances. Our method arranges the obser-

vations obtained from multiple exposure times in a matrix

form, where a column corresponds to an image vector, and

a row corresponds to a pixel location. When the linear rela-

tionship is observed in such a matrix, the rank of the matrix

becomes one. On the other hand, when the response func-

tion is non-linear, the matrix generally becomes full rank.

From this observation, we formulate the estimation of ra-

diometric response functions as a rank minimization prob-

lem.

Contributions We show that the radiometric calibration

problem can be robustly and efficiently solved by a rank

minimization approach. Unlike previous approaches, we

explicitly use the linear dependency of the irradiance vec-

tors. Our rank minimization approach naturally avoids the

over-fitting problem that is common in previous approaches

that rely on the �2-norm minimization. In addition, the pro-
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posed method can recover the response function up to an

exponential ambiguity even when no information is avail-

able about the exposure times. Such recovered functions

are useful for applications such as high-dynamic range im-

age production and image stitching. In addition, we show

that the same formulation can be applied to previous radio-

metric calibration approaches that use the linearity of the

irradiance. As an example, we show the radiometric cal-

ibration from photometric stereo input images where the

lighting directions vary across the images [15].

In presenting our work, we begin by briefly describ-

ing the radiometric response function and reviewing related

works.

1.1. Radiometric response function

The radiometric response function relates the sensor ir-

radiance I and recorded intensity value M (observation) by

M = f(I). (1)

With assumptions of monotonicity and continuity, the re-

sponse function f can be uniquely inverted to an inverse

response function g = f−1. With the inverse response

function g, the recorded intensity values can be linearized

by g(M). Since what is available as input are the observa-

tions M , the radiometric calibration aims at recovering the

inverse response function g.

1.2. Prior work

There are various approaches for radiometric calibra-

tion. One widely-used approach takes as input a set of im-

ages recorded with varying exposures from a fixed camera.

The early work of Mann and Picard [10] used a gamma

correcting function to represent response functions. With

known exposure ratios, their method can successfully re-

cover the inverse response function in the parametric form.

Mitsunaga and Nayar used a different parametric represen-

tation, i.e., a polynomial representation. Using an approxi-

mate knowledge of relative exposure times, their approach

estimates response functions. Grossberg and Nayar [4] cre-

ated a database of response functions (DoRF) and used it for

better representation of response functions. Debevec and

Malik [1] assumed a smoothness property of the response

functions and estimated them in a non-parametric manner.

There are a few prior approaches that allow some camera

movement or scene motion. In Mann’s [9] method, images

are taken by a rotating and zooming camera. Kim and Polle-

feys’s method [5] allows for free movement of the camera

and some motion in the scene.

As pointed out in [3, 5, 8], without the knowledge of

exposure ratios, the estimate still has an exponential am-
biguity. While not unique, such an estimate is still useful

for many applications, such as radiometric alignment, HDR

image production, and image stitching.

Instead of using varying exposure times, some ap-

proaches use statistical properties embedded in images to

achieve radiometric calibration. Tsin et al.’s method [17]

estimates non-parametric response functions using a statis-

tical model of the CCD imaging process. Pal et al. [14]

used probabilistic imaging models and weak prior models

for deriving response functions to produce high-quality high

dynamic range images. Matsushita and Lin [11] proposed

to use the symmetric property of image noise by observ-

ing noise distributions contained in images. Takamatsu et
al. [16] improved the noise-based method with a proba-

bilistic intensity similarity measure, which requires fewer

number of images. Lin et al. [6] and Lin and Zhang [7]

proposed methods that take only a single image as input.

Their methods use edges for obtaining color or gray-scale

histogram distributions, and the optimal inverse response

function is determined by transforming obtained non-linear

distributions into linear distributions. A similar idea is re-

cently introduced by Shi et al. [15] that achieves calibration

from images taken under varying lighting conditions.

2. Low-rank Structure of Calibrated Observa-
tions

Our method casts the radiometric calibration problem as

a low-rank structure recovery problem. Suppose we are

given multiple images taken from a static scene with various

exposures. The sensor irradiance I and observed intensity

value M are related by a radiometric response function f by

Eq. (1). Because the images are taken from a static scene,

the scene radiance L is constant, and the sensor irradiance

becomes proportional to the exposure time e with a constant

scaling k:

I = kLe ∝ e. (2)

Consider an observation matrix D ∈ R
m×n, where m

and n are the numbers of pixels and images, respectively,

created by stacking all the vectorized images vec(Mi) as

D = [vec(M1) | · · · | vec(Mn)] , (3)

where vec(Mi) = [Mi(1), · · · , Mi(m)]
T

for i =
(1, . . . , n). If we know an inverse radiometric response

function g = f−1, the observation matrix D can be trans-

formed into an irradiance matrix A with a scaling ambiguity

by

g ◦D = A = [vec(I1) | · · · | vec(In)] , (4)

where ◦ is an operator that describes the element-wise map-

ping. Since the irradiance vectors vec(Ii) should be linear-

dependent, the rank of the irradiance matrix A becomes one.

Therefore, our method seeks out the inverse response func-

tion g that minimizes the rank of the transformed matrix

g ◦D(= A) as

ĝ = argmin
g

rank (A) s.t. A = g ◦D. (5)
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3. Calibration Algorithm
To efficiently compute the rank minimization problem of

Eq. (5), previous approaches use an approximate solution

method using a nuclear norm (sum of the singular values;

||A||∗ .
=

∑n
i=1 σi (A)) minimization [18].

In our case, however, the nuclear norm minimization

cannot be directly employed because the function g alters

the absolute values of matrix elements, and it therefore re-

sults in the variations of the singular value magnitudes. To

resolve this issue, we instead use condition numbers, i.e., a

ratio of singular values. We define the condition numbers

as κi(A)
.
= σi(A)/σ1(A), i = 2, 3, . . . , n. With the con-

dition numbers, we can work with the relative magnitudes

of the singular values that are unaffected by their absolute

magnitudes. Now we approximate the energy functional (5)

as a minimization of the summation of condition numbers

as:

ĝ = argmin
g

n∑
i=2

κi (A) s.t. A = g ◦D. (6)

There are two main factors causing rank variations: non-

linearity of response function and image noise. The top half

of Table. 1 shows condition numbers from synthetic data

that have five different exposure times. We assume the zero-

mean Gaussian characteristics for image noise. Response

functions in Fig. 2 are used as reference and we averaged

the results of 100 trials for noisy cases. Fig. 2 (a) is an ideal

linear response function. With this linear response function,

all condition numbers are almost zero which means rank-

1 structure. With other more general non-linear response

functions, however, the condition number κ2 becomes com-

parably larger than other condition numbers. This is com-

monly observed because of the monotonic and smooth char-

acteristics of response functions. On the other hand, the

effect of noise also changes the condition numbers. As

shown in the bottom half of Table. 1, image noise makes

all the condition numbers pretty even because of its high-

frequency nature. From the above observations, our method

only uses the condition number κ2 instead of using all the

condition numbers. Now the objective function is changed

from Eq. (6) to

ĝ = argmin
g

κ2 (A) s.t. A = g ◦D. (7)

To achieve a better convergence, we add more constraints to

the objective functions as described in the next subsection.

3.1. Additional constraints

In general, response functions as well as inverse response

functions are monotonic and smooth. To enforce the mono-

tonicity of inverse response functions g, we put in a mono-

tonicity constraint, which is represented as ∂g/∂M > 0.
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Figure 2. Reference response functions used for Table. 1. (a) Ideal

linear response function (RF 1). (b,c,d) General non-linear re-

sponse functions (RF 2-4).

condition number κ2 κ3 κ4 κ5

RF 1 0.0000 0.0000 0.0000 0.0000

without RF 2 0.0289 0.0034 0.0010 0.0005

noise RF 3 0.1163 0.0177 0.0025 0.0001

RF 4 0.0029 0.0000 0.0000 0.0000

RF 1 0.0079 0.0077 0.0075 0.0072

with noise RF 2 0.0293 0.0059 0.0050 0.0048

(σ = 0.005) RF 3 0.1120 0.0175 0.0054 0.0046

RF 4 0.0094 0.0087 0.0085 0.0081

Table 1. Condition number variations

In addition, we use the smoothness constraint for the in-

verse response function g as done in [1] to avoid the ef-

fect of noise. This smoothness constraint is represented

as min
∣∣∂g2/∂2M

∣∣. The smoothness constraint, however,

could cause under-fitting results in the case of complex re-

sponse functions. Since the summation of the condition

numbers is highly correlated to noise level as discussed

above, we use the condition numbers for balancing the

weight of the smoothness constraint. With these constraints,

the final form of the objective function to estimate response

function ĝ is defined as

ĝ = argmin
g

κ2 (A) + λ1

∑
t

H

(
−∂g(t)

∂D

)

+ λ2

n∑
i=2

κi (A)
∑
t

∣∣∣∣∂
2g(t)

∂D2

∣∣∣∣ s.t. A = g ◦D, (8)

where H(·) is the Heaviside step function (H(x) = 1
when x ≥ 0, and H(x) = 0, otherwise). The derivatives

∂g(t)/∂D and ∂2g(t)/∂D2 are assessed by sampling g(t)
at various t in the range of [0, 1]. The boundary conditions

defined as g(0) = 0 and g(1) = 1 are embedded in paramet-

ric representation of g. More specifically, we represent the

response function by a polynomial representation as done

in [12] with the explicit boundary conditions:

g(t) = t+ t(t− 1)

n−1∑
i=1

cit
n−i−1, (9)

where n is the order of a polynomial function, and ci are the

coefficients to estimate. To obtain a greater representation

power, our method can alternatively use other representa-

tions, such as EMoR [4].
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3.2. Exponential ambiguity

As discussed by Grossberg and Nayar in [2], recovery

of the exposure ratios and the response function is impos-

sible without making assumptions on the response function

or having rough estimates on the exposure ratios. When

exposure times are completely unknown, there remains an

exponential ambiguity in the estimate. This exponential am-

biguity means that if g is a solution of I = g(M), then gγ

can also become a solution as Iγ = gγ(M) for any con-

stant value γ. Our method also suffers from this exponen-

tial ambiguity like other methods when the exposure times

are completely unknown, because the rank-1 structure is re-

tained even after any exponential function is applied. In

short, if rank(I) = 1, then rank(Iγ) = 1 for any γ.

However, without making any assumptions about expo-

sure times, our method can robustly recover the response

function up to the exponential ambiguity from at least two

images. To resolve the ambiguity, our method only requires

at least one exposure ratio. Using the known exposure ra-

tio, we can estimate γ by solving the optimization problem

described as

γ̂ = argmin
γ

∑
i,j

[ĝγ(Mi)− ri,j ĝ
γ(Mj)]

2
, (10)

where ri,j is the exposure ratio ei/ej of measurement pairs

Mi and Mj .

4. Experiments
To evaluate the proposed method, we perform exper-

iments using both simulation and real-world data. We

compare our results with results of Mitsunaga and Nayar’s

method [12] (MN method, here-forth) as both methods take

the same input. In our implementation, we used a 6th or-

der polynomial function to represent response functions as

done in [12].

The optimization of Eq. (8) is performed using the

Nelder-Mead simplex method [13]. We choose this method

due to its simplicity, which can be implemented easily using

a Matlab built-in function “fminsearch”. In all the experi-

ments, we use the linear function as the initial guess, and

it is confirmed that the proposed method has a good con-

vergence property even with such simple initialization. We

always set λ1 = 1 and λ2 = 1 in Eq. (8) during the ex-

periment. Once the response function is estimated up to the

exponential ambiguity, we estimate the final response func-

tion using Eq. (10). This optimization is also performed

using the Nelder-Mead simplex method [13].

4.1. Simulation

In this section, we use a synthetic dataset for quantita-

tive evaluation. The synthetic dataset is generated using the

DoRF database [4], which contains 201 measured response
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Figure 3. Scene radiance distributions of four synthetic datasets

(D1-D4).

functions. We synthetically generate scene radiances in the

range of [0, 1] and create 1000 observations (which forms

a 1000-pixel image) using each response function with five

exposure times. The step of exposure ratios is set to 0.5
because this is a commonly available setting in commercial

cameras. Fig. 3 shows scene radiance distribution of the

synthetic dataset. To perform an evaluation, we add five dif-

ferent magnitudes of noise for each radiance distributions;

therefore, a comparison with the MN method is performed

using 1005 synthetic scenes in total. Gaussian noise with

the standard deviation σ(= 0, 0.0025, 0.0050, 0.0075, 0.01)
is used for diversifying the datasets.

Results with synthetic dataset Fig. 4 shows results with

the synthetic dataset. In this figure, we plot cumulative his-

tograms that show the number of successful cases, i.e., suc-

cessful estimation of response functions under a certain root

mean squared error (RMSE) with each configuration. As

shown in the figure, the estimation performance is depen-

dent not only on the noise level but also on the radiance dis-

tribution. With uniformly distributed scene radiance, the es-

timation becomes quite stable. However, when the radiance

distribution is biased, which is very common, it introduces

performance degradation as shown in the D4 result.

We summarize quantitative results in Table. 2. The

DoRF database contains some response functions which are

difficult to represent with 6th order polynomials. These

functions give trivial results for both our method and the

MN method; therefore, we only use the best 150 fitting re-

sults for each of the algorithms to compute the mean and

standard deviation of RMSE and disparity (the maximum

deviation from the ground truth). The tables shows our

method performs well for biased datasets (D2-D4), while

the MN method works better with the uniform data (D1).

Our method is robust against the increasing noise level,

while the performance of the MN method rapidly degrades.

4.2. Real-world experiment

We also perform experiments using real-world cameras

and scenes. In our experiments, we used four different cam-

eras: Canon 20D, Nikon D70, Sony A200 and Olympus E-

1. Each dataset is collected by capturing a static scene with

different exposure times. Fig. 7 shows estimation results
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Figure 4. Cumulative histogram of the number of successful cases w.r.t. RMSE. From left to right, D1-D4 datasets are shown.

Mean Standard Deviation

Sdv. of noise (σ) 0.0000 0.0025 0.0050 0.0075 0.010 0.0000 0.0025 0.0050 0.0075 0.0100

D1

RMSE
MN 0.0042 0.0040 0.0044 0.0056 0.0083 0.0042 0.0041 0.0042 0.0039 0.0045
Ours 0.0031 0.0056 0.0081 0.0093 0.0119 0.0023 0.0041 0.0063 0.0070 0.0083

Disparity
MN 0.0113 0.0111 0.0118 0.0139 0.0188 0.0113 0.0108 0.0105 0.0110 0.0122
Ours 0.0082 0.0144 0.0196 0.0220 0.0270 0.0065 0.0103 0.0140 0.0161 0.0186

D2

RMSE
MN 0.0069 0.0070 0.0118 0.0177 0.0244 0.0067 0.0076 0.0104 0.0139 0.0177

Ours 0.0060 0.0079 0.0088 0.0105 0.0127 0.0048 0.0060 0.0064 0.0082 0.0098

Disparity
MN 0.0163 0.0173 0.0266 0.0402 0.0554 0.0161 0.0182 0.0230 0.0317 0.0396

Ours 0.0138 0.0178 0.0198 0.0240 0.0291 0.0111 0.0138 0.0145 0.0188 0.0229

D3

RMSE
MN 0.0065 0.0062 0.0085 0.0134 0.0186 0.0062 0.0065 0.0076 0.0114 0.0132

Ours 0.0057 0.0062 0.0072 0.0084 0.0094 0.0043 0.0047 0.0050 0.0055 0.0061

Disparity
MN 0.0154 0.0152 0.0198 0.0303 0.0423 0.0150 0.0154 0.0168 0.0249 0.0302

Ours 0.0129 0.0141 0.0164 0.0191 0.0213 0.0100 0.0110 0.0122 0.0137 0.0147

D4

RMSE
MN 0.0083 0.0115 0.0220 0.0350 0.0528 0.0088 0.0107 0.0166 0.0249 0.0358

Ours 0.0076 0.0107 0.0135 0.0178 0.0211 0.0071 0.0082 0.0096 0.0116 0.0126

Disparity
MN 0.0197 0.0263 0.0496 0.0767 0.1127 0.0214 0.0237 0.0362 0.0518 0.0709

Ours 0.0165 0.0219 0.0284 0.0374 0.0439 0.0150 0.0164 0.0203 0.0247 0.0284

Table 2. Quantitative results using the synthetic dataset in comparison with Mitsunaga and Nayar’s method (MN) in terms of the RMSE

and disparity over various datasets.

# of samples 100 1000 10000

RMSE
MN 0.0261 0.0065 0.0022

Ours 0.0141 0.0042 0.0013

Disparity
MN 0.0548 0.0139 0.0047

Ours 0.0295 0.0089 0.0029

Table 3. Result of stability test using the blue channel of the scene

Fig. 7 (a).

with real-world scenes. In the figure, the left column shows

one of the input images, and the middle and right columns

show the estimated response functions. For comparison, we

also estimate the response function using MN method from

the same data input. RMSE and disparity on the figures are

calculated by comparing our result and the MN method’s

result by taking one of them as the ground truth. With rea-

sonable data input, both methods present similar estimation

results. For the evaluation of the stability with respect to

the varying input data, we estimate the response function of

Fig. 7 (a) using randomly sampled pixels (100, 1000, and

10000 pixels). For each sampled pixel number, we test 100

trials and calculate the RMSE and disparity of both meth-

ods. For this test, we use the median of the estimation re-

sults with 10000 samples as the ground truth because the

experiment intends to test stability of the algorithms with

different input data. The result using the blue channel is

summarized in Table. 3. As shown in the table, our method

produces stable estimates even when the number of sampled

pixels is small.

Radiometric alignment One of the advantages of our

calibration algorithm is that our method does not require

any knowledge of exposure times when recovering the re-

sponse function up to exponential ambiguity. Such esti-

mates are useful for applications like radiometric alignment

and image stitching. Here we show a radiometric align-

ment result using the estimated response function in Fig. 5.

Without calibration, the aligned image with proper intensity

normalization using the ratio of (R+G+B) intensity gives an

RMSE of 0.2019. After calibration with our method, the

error is reduced to 0.0385.

2341



Figure 5. Radiometric alignment of real-world images. Top: in-

put images, Bottom: radiometrically aligned images. For display,

gamma correction(γ = 0.5) is applied.

5. Application to other radiometric calibration
methods

The low-rank structure of the image irradiance matrix

is a powerful cue for recovering response functions. Our

method can be easily extended to deal with other radiomet-

ric calibration settings. In this section, we show an example

of the extension by reformulating Shi et al. [15] for robustly

deriving the solution using the rank minimization scheme.

Shi et al. [15] showed that the radiometric calibration for

photometric stereo images can be performed by linearizing

the color profiles. The color profile is defined as an ordered

set of RGB color values in the RGB color space. Their

method capitalizes on the property that color profiles form

straight lines in the RGB color space if the response func-

tion is linear, while non-linear response functions f bend

color profiles to non-linear shapes. Their method therefore

seeks the inverse response function g that linearizes all the

color profiles.

It is straightforward to cast their problem into our low-

rank computation scheme. If the color profiles are stacked

as row vectors to form a matrix, the linearization of color

profiles becomes equivalent to the matrix rank minimization

problem. More specifically, the color profile matrix should

become rank-1 when the correct inverse response function

is applied.

Following the notations of previous sections, we have an

image stack matrix D ∈ R
m×n, and we still use m and

n as the numbers of pixels and images. One difference is

that the images are captured under n different lighting con-

ditions. For each pixel, we have an n-dimensional row vec-

tor vec(Di), i = 1, . . . ,m, and this time we extend each

vec(Di) into a 3×n vector to account for RGB color values.

We denote this observation matrix as D
′
i. If a correct inverse

response function g is given, it transforms the matrix D
′
i to

an irradiance matrix Ai, where rank(Ai) = 1. Involving all

the pixels, we have the objective function written as:

ĝ = argmin
g

m∑
i=1

rank (Ai) s.t. Ai = g ◦D′
i. (11)
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Figure 6. Images of the real-world scene with the number of im-

ages used and radiometric calibration results by linearizing the

color profiles.

Thus, the problem can be solved in exactly the same way as

discussed in previous sections.

To verify the robustness and effectiveness of our method,

we performed experiments on two real-world scenes,

SHEEP and FROG, recorded by a Canon 20D and Nikon

D70, respectively. The ground truth is obtained by the MN

method using a Macbeth Color Chart and the experiment

was performed on an Intel Core2 Duo E6750 (2.66GHz)

CPU.

For each configuration, we randomly select samples to

produce color profiles and compute the average of the re-

sults of ten trials. In practice, the accuracy of the Shi et
al.’s method has dependency on the selected samples, there-

fore we take more trials and remove obvious failure modes.

Fig. 6 shows the results. The median response curve of

ten trials is used for plotting in the figure. We summa-

rize the quantitative results in Table. 4. For both datasets,

our method shows more accurate and stable results. With a

small number of samples, the result of the original method

fluctuates because of the heuristic nonlinearity constraint,

but our method robustly converges well because of the com-

putation scheme. With more samples, both methods give

more stable and robust estimation. As shown in the ta-

ble, our method is about 1000 times faster than the original

method. Since our method has a computational complexity

of O(n), we can use more samples to achieve robust esti-

mation.

6. Conclusions
In this paper, we have introduced a robust radiometric

calibration algorithm that uses the low-rank structure of ir-

radiance vectors. The problem is formulated as a rank mini-

mization and solved by minimization of the condition num-

ber of the input matrix. Our method can robustly estimate

response functions; when the exposure times are completely

unknown, it can estimate the response functions up to an ex-

ponential ambiguity. The advantage of our method is that it

can avoid over-fitting because our method does not rely on

the traditional least-square fitting. Additionally, we show
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Dataset SHEEP (Canon 20D) FROG (Nikon D70)

Method samples RMSE (std.) Disparity (std.) Time(s) RMSE (std.) Disparity (std.) Time(s)

Shi et al.
50 0.0488 (0.0227) 0.0846 (0.0429) 284.01 0.0279 (0.0050) 0.0456 (0.0064) 478.67

100 0.0418 (0.0172) 0.0729 (0.0345) 595.42 0.0293 (0.0038) 0.0441 (0.0056) 891.97

Our method
50 0.0219 (0.0002) 0.0429 (0.0027) 0.27 0.0183 (0.0007) 0.0393 (0.0027) 0.36

100 0.0218 (0.0002) 0.0423 (0.0022) 0.40 0.0176 (0.0004) 0.0390 (0.0023) 0.60

Table 4. Radiometric calibration results by linearizing the color profiles. SHEEP/FROG dataset captured by Canon 20D and Nikon D70 are

used. Ten trial results are averaged. The value inside the brackets is the standard deviation of ten trials.

that our framework can be applied to other radiometric cal-

ibration problems that use linearization of observations by

taking Shi et al.’s method as an example. The effectiveness

of the proposed approach is verified using both simulation

and real-world experiments.

Limitations Since our method is based on low-rank struc-

ture of irradiances, the result of our method always converge

to the direction of minimal rank. As we mentioned before,

rank variations can be observed due to both nonlinear re-

sponse function and image noise. Therefore, the rank could

be more affected by noise when the non-linearity of the re-

sponse function is negligible compared with the noise level,

and in such a case, our method could produce inaccurate

estimation.

In current implementation, we use a simple optimizer for

the rank minimization, and it is usually sufficient to find the

right solution as shown in experiments. However, some-

times the optimization fails to converge to the global so-

lution, or converges to a trivial solution due to insufficient

input data or great noise. This could be improved by using

a better optimization method for the rank minimization.
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(a) Canon 20D
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(b) Nikon D70
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(c) Sony A200
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(d) Olympus E-1
Figure 7. Results of our calibration method. Left column: One of the input images. Middle/right column: Estimated inverse response

functions. The RMSE and disparity are calculated by comparing our estimation and the MN method’s estimation. From top to bottom, the

results of different cameras are shown: (a) Canon 20D, (b) Nikon D70, (c) Sony A200, and (d) Olympus E-1.
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